Loading…
Local heat emission due to unidirectional spin-wave heat conveyer effect observed by lock-in thermography
Lock-in thermography measurements were performed to reveal heat source distribution induced by the unidirectional spin-wave heat conveyer effect (USHCE) of magnetostatic surface spin waves. When the magnetostatic surface spin waves are excited in an yttrium iron garnet slab, the lock-in thermography...
Saved in:
Published in: | Applied physics letters 2021-05, Vol.118 (22) |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Lock-in thermography measurements were performed to reveal heat source distribution induced by the unidirectional spin-wave heat conveyer effect (USHCE) of magnetostatic surface spin waves. When the magnetostatic surface spin waves are excited in an yttrium iron garnet slab, the lock-in thermography images show spatially biased sharp and complicated heating patterns, indicating the importance of edge spin-wave dynamics for USHCE. The accessibility to the local heat emission properties allows us to clarify a capability of remote heating realized by USHCE; it can transfer energy for heating even through a macro-scale air gap between two magnetic materials owing to the long-range dipole–dipole coupling. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/5.0049491 |