Loading…
Geometrical considerations to discern the transverse spin Nernst effect in an all-metallic permalloy/platinum bilayer system
Most spin caloritronics research utilizes thin films on substrates with an in-plane heat flow, where an unintended out-of-plane thermal gradient may develop by heat dissipation through the substrate. In systems exploiting metallic ferromagnets to generate or detect spin currents, such out-of-plane t...
Saved in:
Published in: | Applied physics letters 2021-05, Vol.118 (22) |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c327t-60f46a2d6cd4d738983785ecda71468247832a8e76ca42ca28d5f31b534d80e73 |
---|---|
cites | cdi_FETCH-LOGICAL-c327t-60f46a2d6cd4d738983785ecda71468247832a8e76ca42ca28d5f31b534d80e73 |
container_end_page | |
container_issue | 22 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 118 |
creator | Park, Seondo Park, Yun Daniel |
description | Most spin caloritronics research utilizes thin films on substrates with an in-plane heat flow, where an unintended out-of-plane thermal gradient may develop by heat dissipation through the substrate. In systems exploiting metallic ferromagnets to generate or detect spin currents, such out-of-plane thermal gradients might confuse the signal via undesirable thermomagnetic effects, such as the anomalous Nernst effect. Here, we report direct measurement of the spin current created by the spin Nernst effect in platinum, using ferromagnetic metal contacts as spin accumulation detectors. By comparing the voltage measured transverse and longitudinal to the thermal gradient, we find that the device geometry is crucial in all-metallic systems. Exploiting the orthogonality in the angular dependence on the external magnetic field of the transversely measured voltage, we quantitatively separate the spin Nernst signal from the parasitic anomalous Nernst voltage, which are of the same order of magnitude. As a result, we estimate the spin Nernst angle of platinum to be comparable to the spin Hall angle in magnitude with an opposite sign. |
doi_str_mv | 10.1063/5.0053147 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2536639486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2536639486</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-60f46a2d6cd4d738983785ecda71468247832a8e76ca42ca28d5f31b534d80e73</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKsL_0HAlcK0yeTZpRStQtGNroc0uYMp8zJJCwV_vNEWXQjChXMfH-fCQeiSkgklkk3FhBDBKFdHaESJUgWjVB-jESGEFXIm6Ck6i3GdR1EyNkIfC-hbSMFb02Dbd9E7CCb53OHUY-ejhdDh9AY4BdPFLYQIOA6-w0_5EBOGugabcF6YXE1TZLss3uIBQpu7fjcdmmzZbVq88o3ZQcBxFxO05-ikNk2Ei4OO0ev93cv8oVg-Lx7nt8vCslKlQpKaS1M6aR13iumZZkoLsM4oyqUuudKsNBqUtIaX1pTaiZrRlWDcaQKKjdHV3ncI_fsGYqrW_SZ0-WVVCiYlm3EtM3W9p2zoYwxQV0PwrQm7ipLqK9xKVIdwM3uzZ6P16TuuH3jbh1-wGlz9H_zX-ROdlYnl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2536639486</pqid></control><display><type>article</type><title>Geometrical considerations to discern the transverse spin Nernst effect in an all-metallic permalloy/platinum bilayer system</title><source>American Institute of Physics (AIP) Publications</source><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Park, Seondo ; Park, Yun Daniel</creator><creatorcontrib>Park, Seondo ; Park, Yun Daniel</creatorcontrib><description>Most spin caloritronics research utilizes thin films on substrates with an in-plane heat flow, where an unintended out-of-plane thermal gradient may develop by heat dissipation through the substrate. In systems exploiting metallic ferromagnets to generate or detect spin currents, such out-of-plane thermal gradients might confuse the signal via undesirable thermomagnetic effects, such as the anomalous Nernst effect. Here, we report direct measurement of the spin current created by the spin Nernst effect in platinum, using ferromagnetic metal contacts as spin accumulation detectors. By comparing the voltage measured transverse and longitudinal to the thermal gradient, we find that the device geometry is crucial in all-metallic systems. Exploiting the orthogonality in the angular dependence on the external magnetic field of the transversely measured voltage, we quantitatively separate the spin Nernst signal from the parasitic anomalous Nernst voltage, which are of the same order of magnitude. As a result, we estimate the spin Nernst angle of platinum to be comparable to the spin Hall angle in magnitude with an opposite sign.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0053147</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Bilayers ; Electrical measurement ; Ferromagnetism ; Ferrous alloys ; Heat transmission ; Magnetic alloys ; Nernst-Ettingshausen effect ; Orthogonality ; Platinum ; Spintronics ; Substrates ; Temperature gradients ; Thermomagnetic effects ; Thin films</subject><ispartof>Applied physics letters, 2021-05, Vol.118 (22)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-60f46a2d6cd4d738983785ecda71468247832a8e76ca42ca28d5f31b534d80e73</citedby><cites>FETCH-LOGICAL-c327t-60f46a2d6cd4d738983785ecda71468247832a8e76ca42ca28d5f31b534d80e73</cites><orcidid>0000-0001-7699-0432</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0053147$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,782,784,795,27924,27925,76383</link.rule.ids></links><search><creatorcontrib>Park, Seondo</creatorcontrib><creatorcontrib>Park, Yun Daniel</creatorcontrib><title>Geometrical considerations to discern the transverse spin Nernst effect in an all-metallic permalloy/platinum bilayer system</title><title>Applied physics letters</title><description>Most spin caloritronics research utilizes thin films on substrates with an in-plane heat flow, where an unintended out-of-plane thermal gradient may develop by heat dissipation through the substrate. In systems exploiting metallic ferromagnets to generate or detect spin currents, such out-of-plane thermal gradients might confuse the signal via undesirable thermomagnetic effects, such as the anomalous Nernst effect. Here, we report direct measurement of the spin current created by the spin Nernst effect in platinum, using ferromagnetic metal contacts as spin accumulation detectors. By comparing the voltage measured transverse and longitudinal to the thermal gradient, we find that the device geometry is crucial in all-metallic systems. Exploiting the orthogonality in the angular dependence on the external magnetic field of the transversely measured voltage, we quantitatively separate the spin Nernst signal from the parasitic anomalous Nernst voltage, which are of the same order of magnitude. As a result, we estimate the spin Nernst angle of platinum to be comparable to the spin Hall angle in magnitude with an opposite sign.</description><subject>Applied physics</subject><subject>Bilayers</subject><subject>Electrical measurement</subject><subject>Ferromagnetism</subject><subject>Ferrous alloys</subject><subject>Heat transmission</subject><subject>Magnetic alloys</subject><subject>Nernst-Ettingshausen effect</subject><subject>Orthogonality</subject><subject>Platinum</subject><subject>Spintronics</subject><subject>Substrates</subject><subject>Temperature gradients</subject><subject>Thermomagnetic effects</subject><subject>Thin films</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKsL_0HAlcK0yeTZpRStQtGNroc0uYMp8zJJCwV_vNEWXQjChXMfH-fCQeiSkgklkk3FhBDBKFdHaESJUgWjVB-jESGEFXIm6Ck6i3GdR1EyNkIfC-hbSMFb02Dbd9E7CCb53OHUY-ejhdDh9AY4BdPFLYQIOA6-w0_5EBOGugabcF6YXE1TZLss3uIBQpu7fjcdmmzZbVq88o3ZQcBxFxO05-ikNk2Ei4OO0ev93cv8oVg-Lx7nt8vCslKlQpKaS1M6aR13iumZZkoLsM4oyqUuudKsNBqUtIaX1pTaiZrRlWDcaQKKjdHV3ncI_fsGYqrW_SZ0-WVVCiYlm3EtM3W9p2zoYwxQV0PwrQm7ipLqK9xKVIdwM3uzZ6P16TuuH3jbh1-wGlz9H_zX-ROdlYnl</recordid><startdate>20210531</startdate><enddate>20210531</enddate><creator>Park, Seondo</creator><creator>Park, Yun Daniel</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7699-0432</orcidid></search><sort><creationdate>20210531</creationdate><title>Geometrical considerations to discern the transverse spin Nernst effect in an all-metallic permalloy/platinum bilayer system</title><author>Park, Seondo ; Park, Yun Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-60f46a2d6cd4d738983785ecda71468247832a8e76ca42ca28d5f31b534d80e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applied physics</topic><topic>Bilayers</topic><topic>Electrical measurement</topic><topic>Ferromagnetism</topic><topic>Ferrous alloys</topic><topic>Heat transmission</topic><topic>Magnetic alloys</topic><topic>Nernst-Ettingshausen effect</topic><topic>Orthogonality</topic><topic>Platinum</topic><topic>Spintronics</topic><topic>Substrates</topic><topic>Temperature gradients</topic><topic>Thermomagnetic effects</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Seondo</creatorcontrib><creatorcontrib>Park, Yun Daniel</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Seondo</au><au>Park, Yun Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometrical considerations to discern the transverse spin Nernst effect in an all-metallic permalloy/platinum bilayer system</atitle><jtitle>Applied physics letters</jtitle><date>2021-05-31</date><risdate>2021</risdate><volume>118</volume><issue>22</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Most spin caloritronics research utilizes thin films on substrates with an in-plane heat flow, where an unintended out-of-plane thermal gradient may develop by heat dissipation through the substrate. In systems exploiting metallic ferromagnets to generate or detect spin currents, such out-of-plane thermal gradients might confuse the signal via undesirable thermomagnetic effects, such as the anomalous Nernst effect. Here, we report direct measurement of the spin current created by the spin Nernst effect in platinum, using ferromagnetic metal contacts as spin accumulation detectors. By comparing the voltage measured transverse and longitudinal to the thermal gradient, we find that the device geometry is crucial in all-metallic systems. Exploiting the orthogonality in the angular dependence on the external magnetic field of the transversely measured voltage, we quantitatively separate the spin Nernst signal from the parasitic anomalous Nernst voltage, which are of the same order of magnitude. As a result, we estimate the spin Nernst angle of platinum to be comparable to the spin Hall angle in magnitude with an opposite sign.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0053147</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-7699-0432</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2021-05, Vol.118 (22) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_proquest_journals_2536639486 |
source | American Institute of Physics (AIP) Publications; American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Applied physics Bilayers Electrical measurement Ferromagnetism Ferrous alloys Heat transmission Magnetic alloys Nernst-Ettingshausen effect Orthogonality Platinum Spintronics Substrates Temperature gradients Thermomagnetic effects Thin films |
title | Geometrical considerations to discern the transverse spin Nernst effect in an all-metallic permalloy/platinum bilayer system |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T16%3A26%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometrical%20considerations%20to%20discern%20the%20transverse%20spin%20Nernst%20effect%20in%20an%20all-metallic%20permalloy/platinum%20bilayer%20system&rft.jtitle=Applied%20physics%20letters&rft.au=Park,%20Seondo&rft.date=2021-05-31&rft.volume=118&rft.issue=22&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0053147&rft_dat=%3Cproquest_cross%3E2536639486%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c327t-60f46a2d6cd4d738983785ecda71468247832a8e76ca42ca28d5f31b534d80e73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2536639486&rft_id=info:pmid/&rfr_iscdi=true |