Loading…

Geometrical considerations to discern the transverse spin Nernst effect in an all-metallic permalloy/platinum bilayer system

Most spin caloritronics research utilizes thin films on substrates with an in-plane heat flow, where an unintended out-of-plane thermal gradient may develop by heat dissipation through the substrate. In systems exploiting metallic ferromagnets to generate or detect spin currents, such out-of-plane t...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2021-05, Vol.118 (22)
Main Authors: Park, Seondo, Park, Yun Daniel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c327t-60f46a2d6cd4d738983785ecda71468247832a8e76ca42ca28d5f31b534d80e73
cites cdi_FETCH-LOGICAL-c327t-60f46a2d6cd4d738983785ecda71468247832a8e76ca42ca28d5f31b534d80e73
container_end_page
container_issue 22
container_start_page
container_title Applied physics letters
container_volume 118
creator Park, Seondo
Park, Yun Daniel
description Most spin caloritronics research utilizes thin films on substrates with an in-plane heat flow, where an unintended out-of-plane thermal gradient may develop by heat dissipation through the substrate. In systems exploiting metallic ferromagnets to generate or detect spin currents, such out-of-plane thermal gradients might confuse the signal via undesirable thermomagnetic effects, such as the anomalous Nernst effect. Here, we report direct measurement of the spin current created by the spin Nernst effect in platinum, using ferromagnetic metal contacts as spin accumulation detectors. By comparing the voltage measured transverse and longitudinal to the thermal gradient, we find that the device geometry is crucial in all-metallic systems. Exploiting the orthogonality in the angular dependence on the external magnetic field of the transversely measured voltage, we quantitatively separate the spin Nernst signal from the parasitic anomalous Nernst voltage, which are of the same order of magnitude. As a result, we estimate the spin Nernst angle of platinum to be comparable to the spin Hall angle in magnitude with an opposite sign.
doi_str_mv 10.1063/5.0053147
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2536639486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2536639486</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-60f46a2d6cd4d738983785ecda71468247832a8e76ca42ca28d5f31b534d80e73</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKsL_0HAlcK0yeTZpRStQtGNroc0uYMp8zJJCwV_vNEWXQjChXMfH-fCQeiSkgklkk3FhBDBKFdHaESJUgWjVB-jESGEFXIm6Ck6i3GdR1EyNkIfC-hbSMFb02Dbd9E7CCb53OHUY-ejhdDh9AY4BdPFLYQIOA6-w0_5EBOGugabcF6YXE1TZLss3uIBQpu7fjcdmmzZbVq88o3ZQcBxFxO05-ikNk2Ei4OO0ev93cv8oVg-Lx7nt8vCslKlQpKaS1M6aR13iumZZkoLsM4oyqUuudKsNBqUtIaX1pTaiZrRlWDcaQKKjdHV3ncI_fsGYqrW_SZ0-WVVCiYlm3EtM3W9p2zoYwxQV0PwrQm7ipLqK9xKVIdwM3uzZ6P16TuuH3jbh1-wGlz9H_zX-ROdlYnl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2536639486</pqid></control><display><type>article</type><title>Geometrical considerations to discern the transverse spin Nernst effect in an all-metallic permalloy/platinum bilayer system</title><source>American Institute of Physics (AIP) Publications</source><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Park, Seondo ; Park, Yun Daniel</creator><creatorcontrib>Park, Seondo ; Park, Yun Daniel</creatorcontrib><description>Most spin caloritronics research utilizes thin films on substrates with an in-plane heat flow, where an unintended out-of-plane thermal gradient may develop by heat dissipation through the substrate. In systems exploiting metallic ferromagnets to generate or detect spin currents, such out-of-plane thermal gradients might confuse the signal via undesirable thermomagnetic effects, such as the anomalous Nernst effect. Here, we report direct measurement of the spin current created by the spin Nernst effect in platinum, using ferromagnetic metal contacts as spin accumulation detectors. By comparing the voltage measured transverse and longitudinal to the thermal gradient, we find that the device geometry is crucial in all-metallic systems. Exploiting the orthogonality in the angular dependence on the external magnetic field of the transversely measured voltage, we quantitatively separate the spin Nernst signal from the parasitic anomalous Nernst voltage, which are of the same order of magnitude. As a result, we estimate the spin Nernst angle of platinum to be comparable to the spin Hall angle in magnitude with an opposite sign.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0053147</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Bilayers ; Electrical measurement ; Ferromagnetism ; Ferrous alloys ; Heat transmission ; Magnetic alloys ; Nernst-Ettingshausen effect ; Orthogonality ; Platinum ; Spintronics ; Substrates ; Temperature gradients ; Thermomagnetic effects ; Thin films</subject><ispartof>Applied physics letters, 2021-05, Vol.118 (22)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-60f46a2d6cd4d738983785ecda71468247832a8e76ca42ca28d5f31b534d80e73</citedby><cites>FETCH-LOGICAL-c327t-60f46a2d6cd4d738983785ecda71468247832a8e76ca42ca28d5f31b534d80e73</cites><orcidid>0000-0001-7699-0432</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0053147$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,782,784,795,27924,27925,76383</link.rule.ids></links><search><creatorcontrib>Park, Seondo</creatorcontrib><creatorcontrib>Park, Yun Daniel</creatorcontrib><title>Geometrical considerations to discern the transverse spin Nernst effect in an all-metallic permalloy/platinum bilayer system</title><title>Applied physics letters</title><description>Most spin caloritronics research utilizes thin films on substrates with an in-plane heat flow, where an unintended out-of-plane thermal gradient may develop by heat dissipation through the substrate. In systems exploiting metallic ferromagnets to generate or detect spin currents, such out-of-plane thermal gradients might confuse the signal via undesirable thermomagnetic effects, such as the anomalous Nernst effect. Here, we report direct measurement of the spin current created by the spin Nernst effect in platinum, using ferromagnetic metal contacts as spin accumulation detectors. By comparing the voltage measured transverse and longitudinal to the thermal gradient, we find that the device geometry is crucial in all-metallic systems. Exploiting the orthogonality in the angular dependence on the external magnetic field of the transversely measured voltage, we quantitatively separate the spin Nernst signal from the parasitic anomalous Nernst voltage, which are of the same order of magnitude. As a result, we estimate the spin Nernst angle of platinum to be comparable to the spin Hall angle in magnitude with an opposite sign.</description><subject>Applied physics</subject><subject>Bilayers</subject><subject>Electrical measurement</subject><subject>Ferromagnetism</subject><subject>Ferrous alloys</subject><subject>Heat transmission</subject><subject>Magnetic alloys</subject><subject>Nernst-Ettingshausen effect</subject><subject>Orthogonality</subject><subject>Platinum</subject><subject>Spintronics</subject><subject>Substrates</subject><subject>Temperature gradients</subject><subject>Thermomagnetic effects</subject><subject>Thin films</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKsL_0HAlcK0yeTZpRStQtGNroc0uYMp8zJJCwV_vNEWXQjChXMfH-fCQeiSkgklkk3FhBDBKFdHaESJUgWjVB-jESGEFXIm6Ck6i3GdR1EyNkIfC-hbSMFb02Dbd9E7CCb53OHUY-ejhdDh9AY4BdPFLYQIOA6-w0_5EBOGugabcF6YXE1TZLss3uIBQpu7fjcdmmzZbVq88o3ZQcBxFxO05-ikNk2Ei4OO0ev93cv8oVg-Lx7nt8vCslKlQpKaS1M6aR13iumZZkoLsM4oyqUuudKsNBqUtIaX1pTaiZrRlWDcaQKKjdHV3ncI_fsGYqrW_SZ0-WVVCiYlm3EtM3W9p2zoYwxQV0PwrQm7ipLqK9xKVIdwM3uzZ6P16TuuH3jbh1-wGlz9H_zX-ROdlYnl</recordid><startdate>20210531</startdate><enddate>20210531</enddate><creator>Park, Seondo</creator><creator>Park, Yun Daniel</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7699-0432</orcidid></search><sort><creationdate>20210531</creationdate><title>Geometrical considerations to discern the transverse spin Nernst effect in an all-metallic permalloy/platinum bilayer system</title><author>Park, Seondo ; Park, Yun Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-60f46a2d6cd4d738983785ecda71468247832a8e76ca42ca28d5f31b534d80e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applied physics</topic><topic>Bilayers</topic><topic>Electrical measurement</topic><topic>Ferromagnetism</topic><topic>Ferrous alloys</topic><topic>Heat transmission</topic><topic>Magnetic alloys</topic><topic>Nernst-Ettingshausen effect</topic><topic>Orthogonality</topic><topic>Platinum</topic><topic>Spintronics</topic><topic>Substrates</topic><topic>Temperature gradients</topic><topic>Thermomagnetic effects</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Seondo</creatorcontrib><creatorcontrib>Park, Yun Daniel</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Seondo</au><au>Park, Yun Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometrical considerations to discern the transverse spin Nernst effect in an all-metallic permalloy/platinum bilayer system</atitle><jtitle>Applied physics letters</jtitle><date>2021-05-31</date><risdate>2021</risdate><volume>118</volume><issue>22</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Most spin caloritronics research utilizes thin films on substrates with an in-plane heat flow, where an unintended out-of-plane thermal gradient may develop by heat dissipation through the substrate. In systems exploiting metallic ferromagnets to generate or detect spin currents, such out-of-plane thermal gradients might confuse the signal via undesirable thermomagnetic effects, such as the anomalous Nernst effect. Here, we report direct measurement of the spin current created by the spin Nernst effect in platinum, using ferromagnetic metal contacts as spin accumulation detectors. By comparing the voltage measured transverse and longitudinal to the thermal gradient, we find that the device geometry is crucial in all-metallic systems. Exploiting the orthogonality in the angular dependence on the external magnetic field of the transversely measured voltage, we quantitatively separate the spin Nernst signal from the parasitic anomalous Nernst voltage, which are of the same order of magnitude. As a result, we estimate the spin Nernst angle of platinum to be comparable to the spin Hall angle in magnitude with an opposite sign.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0053147</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-7699-0432</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2021-05, Vol.118 (22)
issn 0003-6951
1077-3118
language eng
recordid cdi_proquest_journals_2536639486
source American Institute of Physics (AIP) Publications; American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Applied physics
Bilayers
Electrical measurement
Ferromagnetism
Ferrous alloys
Heat transmission
Magnetic alloys
Nernst-Ettingshausen effect
Orthogonality
Platinum
Spintronics
Substrates
Temperature gradients
Thermomagnetic effects
Thin films
title Geometrical considerations to discern the transverse spin Nernst effect in an all-metallic permalloy/platinum bilayer system
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T16%3A26%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometrical%20considerations%20to%20discern%20the%20transverse%20spin%20Nernst%20effect%20in%20an%20all-metallic%20permalloy/platinum%20bilayer%20system&rft.jtitle=Applied%20physics%20letters&rft.au=Park,%20Seondo&rft.date=2021-05-31&rft.volume=118&rft.issue=22&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0053147&rft_dat=%3Cproquest_cross%3E2536639486%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c327t-60f46a2d6cd4d738983785ecda71468247832a8e76ca42ca28d5f31b534d80e73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2536639486&rft_id=info:pmid/&rfr_iscdi=true