Loading…

Enabling Viewpoint Learning through Dynamic Label Generation

Optimal viewpoint prediction is an essential task in many computer graphics applications. Unfortunately, common viewpoint qualities suffer from two major drawbacks: dependency on clean surface meshes, which are not always available, and the lack of closed‐form expressions, which requires a costly se...

Full description

Saved in:
Bibliographic Details
Published in:Computer graphics forum 2021-05, Vol.40 (2), p.413-423
Main Authors: Schelling, M., Hermosilla, P., Vázquez, P.‐P., Ropinski, T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3843-e021b914f9cf61b26d84ebb3a8ce3dc01f469db7a2b338fe58624fcbbb6cb8aa3
cites cdi_FETCH-LOGICAL-c3843-e021b914f9cf61b26d84ebb3a8ce3dc01f469db7a2b338fe58624fcbbb6cb8aa3
container_end_page 423
container_issue 2
container_start_page 413
container_title Computer graphics forum
container_volume 40
creator Schelling, M.
Hermosilla, P.
Vázquez, P.‐P.
Ropinski, T.
description Optimal viewpoint prediction is an essential task in many computer graphics applications. Unfortunately, common viewpoint qualities suffer from two major drawbacks: dependency on clean surface meshes, which are not always available, and the lack of closed‐form expressions, which requires a costly search involving rendering. To overcome these limitations we propose to separate viewpoint selection from rendering through an end‐to‐end learning approach, whereby we reduce the influence of the mesh quality by predicting viewpoints from unstructured point clouds instead of polygonal meshes. While this makes our approach insensitive to the mesh discretization during evaluation, it only becomes possible when resolving label ambiguities that arise in this context. Therefore, we additionally propose to incorporate the label generation into the training procedure, making the label decision adaptive to the current network predictions. We show how our proposed approach allows for learning viewpoint predictions for models from different object categories and for different viewpoint qualities. Additionally, we show that prediction times are reduced from several minutes to a fraction of a second, as compared to state‐of‐the‐art (SOTA) viewpoint quality evaluation. Code and training data is available at https://github.com/schellmi42/viewpoint_learning, which is to our knowledge the biggest viewpoint quality dataset available.
doi_str_mv 10.1111/cgf.142643
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2536813128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2536813128</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3843-e021b914f9cf61b26d84ebb3a8ce3dc01f469db7a2b338fe58624fcbbb6cb8aa3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKsXf8GCN2FrvjabBS9S2yoseFGvIUknbco2W7Nbyv57U9azc5mX4ZkZeBC6J3hGUj3ZjZsRTgVnF2hCuChzKYrqEk0wSbnERXGNbrpuhzHmpSgm6HkRtGl82GTfHk6H1oc-q0HHcB7129geN9vsdQh6721WawNNtoIAUfe-Dbfoyummg7u_PkVfy8Xn_C2vP1bv85c6t0xylgOmxFSEu8o6QQwVa8nBGKalBba2mDguqrUpNTWMSQeFFJQ7a4wR1kit2RQ9jHcPsf05QterXXuMIb1UtGBCEkaoTNTjSNnYdl0Epw7R73UcFMHqbEclO2q0k2A8wiffwPAPqearZUpp5RcvamZx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2536813128</pqid></control><display><type>article</type><title>Enabling Viewpoint Learning through Dynamic Label Generation</title><source>Business Source Ultimate【Trial: -2024/12/31】【Remote access available】</source><source>EBSCOhost Art &amp; Architecture Source - eBooks</source><source>Wiley</source><creator>Schelling, M. ; Hermosilla, P. ; Vázquez, P.‐P. ; Ropinski, T.</creator><creatorcontrib>Schelling, M. ; Hermosilla, P. ; Vázquez, P.‐P. ; Ropinski, T.</creatorcontrib><description>Optimal viewpoint prediction is an essential task in many computer graphics applications. Unfortunately, common viewpoint qualities suffer from two major drawbacks: dependency on clean surface meshes, which are not always available, and the lack of closed‐form expressions, which requires a costly search involving rendering. To overcome these limitations we propose to separate viewpoint selection from rendering through an end‐to‐end learning approach, whereby we reduce the influence of the mesh quality by predicting viewpoints from unstructured point clouds instead of polygonal meshes. While this makes our approach insensitive to the mesh discretization during evaluation, it only becomes possible when resolving label ambiguities that arise in this context. Therefore, we additionally propose to incorporate the label generation into the training procedure, making the label decision adaptive to the current network predictions. We show how our proposed approach allows for learning viewpoint predictions for models from different object categories and for different viewpoint qualities. Additionally, we show that prediction times are reduced from several minutes to a fraction of a second, as compared to state‐of‐the‐art (SOTA) viewpoint quality evaluation. Code and training data is available at https://github.com/schellmi42/viewpoint_learning, which is to our knowledge the biggest viewpoint quality dataset available.</description><identifier>ISSN: 0167-7055</identifier><identifier>EISSN: 1467-8659</identifier><identifier>DOI: 10.1111/cgf.142643</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>CCS Concepts ; Computer graphics ; Computing methodologies → Computer graphics; Neural networks ; Finite element method ; Learning ; Quality assessment ; Rendering ; Training</subject><ispartof>Computer graphics forum, 2021-05, Vol.40 (2), p.413-423</ispartof><rights>2021 The Author(s) Computer Graphics Forum © 2021 The Eurographics Association and John Wiley &amp; Sons Ltd. Published by John Wiley &amp; Sons Ltd.</rights><rights>2021 The Eurographics Association and John Wiley &amp; Sons Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3843-e021b914f9cf61b26d84ebb3a8ce3dc01f469db7a2b338fe58624fcbbb6cb8aa3</citedby><cites>FETCH-LOGICAL-c3843-e021b914f9cf61b26d84ebb3a8ce3dc01f469db7a2b338fe58624fcbbb6cb8aa3</cites><orcidid>0000-0003-4638-4065 ; 0000-0001-5294-4474 ; 0000-0003-3586-4741 ; 0000-0002-7857-5512</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Schelling, M.</creatorcontrib><creatorcontrib>Hermosilla, P.</creatorcontrib><creatorcontrib>Vázquez, P.‐P.</creatorcontrib><creatorcontrib>Ropinski, T.</creatorcontrib><title>Enabling Viewpoint Learning through Dynamic Label Generation</title><title>Computer graphics forum</title><description>Optimal viewpoint prediction is an essential task in many computer graphics applications. Unfortunately, common viewpoint qualities suffer from two major drawbacks: dependency on clean surface meshes, which are not always available, and the lack of closed‐form expressions, which requires a costly search involving rendering. To overcome these limitations we propose to separate viewpoint selection from rendering through an end‐to‐end learning approach, whereby we reduce the influence of the mesh quality by predicting viewpoints from unstructured point clouds instead of polygonal meshes. While this makes our approach insensitive to the mesh discretization during evaluation, it only becomes possible when resolving label ambiguities that arise in this context. Therefore, we additionally propose to incorporate the label generation into the training procedure, making the label decision adaptive to the current network predictions. We show how our proposed approach allows for learning viewpoint predictions for models from different object categories and for different viewpoint qualities. Additionally, we show that prediction times are reduced from several minutes to a fraction of a second, as compared to state‐of‐the‐art (SOTA) viewpoint quality evaluation. Code and training data is available at https://github.com/schellmi42/viewpoint_learning, which is to our knowledge the biggest viewpoint quality dataset available.</description><subject>CCS Concepts</subject><subject>Computer graphics</subject><subject>Computing methodologies → Computer graphics; Neural networks</subject><subject>Finite element method</subject><subject>Learning</subject><subject>Quality assessment</subject><subject>Rendering</subject><subject>Training</subject><issn>0167-7055</issn><issn>1467-8659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKsXf8GCN2FrvjabBS9S2yoseFGvIUknbco2W7Nbyv57U9azc5mX4ZkZeBC6J3hGUj3ZjZsRTgVnF2hCuChzKYrqEk0wSbnERXGNbrpuhzHmpSgm6HkRtGl82GTfHk6H1oc-q0HHcB7129geN9vsdQh6721WawNNtoIAUfe-Dbfoyummg7u_PkVfy8Xn_C2vP1bv85c6t0xylgOmxFSEu8o6QQwVa8nBGKalBba2mDguqrUpNTWMSQeFFJQ7a4wR1kit2RQ9jHcPsf05QterXXuMIb1UtGBCEkaoTNTjSNnYdl0Epw7R73UcFMHqbEclO2q0k2A8wiffwPAPqearZUpp5RcvamZx</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Schelling, M.</creator><creator>Hermosilla, P.</creator><creator>Vázquez, P.‐P.</creator><creator>Ropinski, T.</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4638-4065</orcidid><orcidid>https://orcid.org/0000-0001-5294-4474</orcidid><orcidid>https://orcid.org/0000-0003-3586-4741</orcidid><orcidid>https://orcid.org/0000-0002-7857-5512</orcidid></search><sort><creationdate>202105</creationdate><title>Enabling Viewpoint Learning through Dynamic Label Generation</title><author>Schelling, M. ; Hermosilla, P. ; Vázquez, P.‐P. ; Ropinski, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3843-e021b914f9cf61b26d84ebb3a8ce3dc01f469db7a2b338fe58624fcbbb6cb8aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CCS Concepts</topic><topic>Computer graphics</topic><topic>Computing methodologies → Computer graphics; Neural networks</topic><topic>Finite element method</topic><topic>Learning</topic><topic>Quality assessment</topic><topic>Rendering</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schelling, M.</creatorcontrib><creatorcontrib>Hermosilla, P.</creatorcontrib><creatorcontrib>Vázquez, P.‐P.</creatorcontrib><creatorcontrib>Ropinski, T.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer graphics forum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schelling, M.</au><au>Hermosilla, P.</au><au>Vázquez, P.‐P.</au><au>Ropinski, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enabling Viewpoint Learning through Dynamic Label Generation</atitle><jtitle>Computer graphics forum</jtitle><date>2021-05</date><risdate>2021</risdate><volume>40</volume><issue>2</issue><spage>413</spage><epage>423</epage><pages>413-423</pages><issn>0167-7055</issn><eissn>1467-8659</eissn><abstract>Optimal viewpoint prediction is an essential task in many computer graphics applications. Unfortunately, common viewpoint qualities suffer from two major drawbacks: dependency on clean surface meshes, which are not always available, and the lack of closed‐form expressions, which requires a costly search involving rendering. To overcome these limitations we propose to separate viewpoint selection from rendering through an end‐to‐end learning approach, whereby we reduce the influence of the mesh quality by predicting viewpoints from unstructured point clouds instead of polygonal meshes. While this makes our approach insensitive to the mesh discretization during evaluation, it only becomes possible when resolving label ambiguities that arise in this context. Therefore, we additionally propose to incorporate the label generation into the training procedure, making the label decision adaptive to the current network predictions. We show how our proposed approach allows for learning viewpoint predictions for models from different object categories and for different viewpoint qualities. Additionally, we show that prediction times are reduced from several minutes to a fraction of a second, as compared to state‐of‐the‐art (SOTA) viewpoint quality evaluation. Code and training data is available at https://github.com/schellmi42/viewpoint_learning, which is to our knowledge the biggest viewpoint quality dataset available.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/cgf.142643</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4638-4065</orcidid><orcidid>https://orcid.org/0000-0001-5294-4474</orcidid><orcidid>https://orcid.org/0000-0003-3586-4741</orcidid><orcidid>https://orcid.org/0000-0002-7857-5512</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0167-7055
ispartof Computer graphics forum, 2021-05, Vol.40 (2), p.413-423
issn 0167-7055
1467-8659
language eng
recordid cdi_proquest_journals_2536813128
source Business Source Ultimate【Trial: -2024/12/31】【Remote access available】; EBSCOhost Art & Architecture Source - eBooks; Wiley
subjects CCS Concepts
Computer graphics
Computing methodologies → Computer graphics
Neural networks
Finite element method
Learning
Quality assessment
Rendering
Training
title Enabling Viewpoint Learning through Dynamic Label Generation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A24%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enabling%20Viewpoint%20Learning%20through%20Dynamic%20Label%20Generation&rft.jtitle=Computer%20graphics%20forum&rft.au=Schelling,%20M.&rft.date=2021-05&rft.volume=40&rft.issue=2&rft.spage=413&rft.epage=423&rft.pages=413-423&rft.issn=0167-7055&rft.eissn=1467-8659&rft_id=info:doi/10.1111/cgf.142643&rft_dat=%3Cproquest_cross%3E2536813128%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3843-e021b914f9cf61b26d84ebb3a8ce3dc01f469db7a2b338fe58624fcbbb6cb8aa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2536813128&rft_id=info:pmid/&rfr_iscdi=true