Loading…
Neural Successive Cancellation Flip Decoding of Polar Codes
Dynamic successive cancellation flip (DSCF) decoding of polar codes is a powerful algorithm that can achieve the error correction performance of successive cancellation list (SCL) decoding, with an average complexity that is close to that of successive cancellation (SC) decoding at practical signal-...
Saved in:
Published in: | Journal of signal processing systems 2021-06, Vol.93 (6), p.631-642 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-c8517e65429e1967bb4df14037c24a0bb57ab8d7b5fe2a774836af894eb7b8493 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-c8517e65429e1967bb4df14037c24a0bb57ab8d7b5fe2a774836af894eb7b8493 |
container_end_page | 642 |
container_issue | 6 |
container_start_page | 631 |
container_title | Journal of signal processing systems |
container_volume | 93 |
creator | Doan, Nghia Hashemi, Seyyed Ali Ercan, Furkan Tonnellier, Thibaud Gross, Warren J. |
description | Dynamic successive cancellation flip (DSCF) decoding of polar codes is a powerful algorithm that can achieve the error correction performance of successive cancellation list (SCL) decoding, with an average complexity that is close to that of successive cancellation (SC) decoding at practical signal-to-noise ratio (SNR) regimes. However, DSCF decoding requires costly transcendental computations to calculate a bit-flipping metric, which adversely affect its implementation complexity. In this paper, we first show that a direct application of common approximation schemes on the conventional DSCF decoding results in a significant error-correction performance loss. We then introduce an additive perturbation parameter and propose an approximation scheme which completely removes the need to perform transcendental computations in DSCF decoding. Machine learning (ML) techniques are then utilized to optimize the perturbation parameter of the proposed scheme. Furthermore, a quantization scheme is developed to enable efficient hardware implementation. Simulation results show that when compared with DSCF decoding, the proposed decoder with quantization scheme only experiences a negligible error-correction performance degradation of less that 0.08 dB at a target frame-error-rate (FER) of 10
− 4
, for a polar code of length 512 with 256 information bits. In addition, the bit-flipping metric computation of the proposed decoder reduces up to around 31
%
of the number of additions used by the bit-flipping metric computation of DSCF decoding, without any need to perform costly transcendental computations and multiplications. |
doi_str_mv | 10.1007/s11265-020-01599-y |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2536820477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2536820477</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-c8517e65429e1967bb4df14037c24a0bb57ab8d7b5fe2a774836af894eb7b8493</originalsourceid><addsrcrecordid>eNp9kE1LxDAURYMoOI7-AVcF19G8fDQJrqQ6KgwqqOuQpOnQoTZjMhXm31ut4s7Vu4t77oOD0CmQcyBEXmQAWgpMKMEEhNZ4t4dmoJnGCkDs_2YC6hAd5bwmpCRSwAxdPoQh2a54HrwPObcfoahs70PX2W0b-2LRtZviOvhYt_2qiE3xFDubiirWIR-jg8Z2OZz83Dl6Xdy8VHd4-Xh7X10tsWegt9grATKUglMdQJfSOV43wAmTnnJLnBPSOlVLJ5pArZRcsdI2SvPgpFNcszk6m3Y3Kb4PIW_NOg6pH18aKlipKOFSji06tXyKOafQmE1q32zaGSDmS5KZJJlRkvmWZHYjxCYoj-V-FdLf9D_UJwdhaTo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2536820477</pqid></control><display><type>article</type><title>Neural Successive Cancellation Flip Decoding of Polar Codes</title><source>Springer Nature</source><creator>Doan, Nghia ; Hashemi, Seyyed Ali ; Ercan, Furkan ; Tonnellier, Thibaud ; Gross, Warren J.</creator><creatorcontrib>Doan, Nghia ; Hashemi, Seyyed Ali ; Ercan, Furkan ; Tonnellier, Thibaud ; Gross, Warren J.</creatorcontrib><description>Dynamic successive cancellation flip (DSCF) decoding of polar codes is a powerful algorithm that can achieve the error correction performance of successive cancellation list (SCL) decoding, with an average complexity that is close to that of successive cancellation (SC) decoding at practical signal-to-noise ratio (SNR) regimes. However, DSCF decoding requires costly transcendental computations to calculate a bit-flipping metric, which adversely affect its implementation complexity. In this paper, we first show that a direct application of common approximation schemes on the conventional DSCF decoding results in a significant error-correction performance loss. We then introduce an additive perturbation parameter and propose an approximation scheme which completely removes the need to perform transcendental computations in DSCF decoding. Machine learning (ML) techniques are then utilized to optimize the perturbation parameter of the proposed scheme. Furthermore, a quantization scheme is developed to enable efficient hardware implementation. Simulation results show that when compared with DSCF decoding, the proposed decoder with quantization scheme only experiences a negligible error-correction performance degradation of less that 0.08 dB at a target frame-error-rate (FER) of 10
− 4
, for a polar code of length 512 with 256 information bits. In addition, the bit-flipping metric computation of the proposed decoder reduces up to around 31
%
of the number of additions used by the bit-flipping metric computation of DSCF decoding, without any need to perform costly transcendental computations and multiplications.</description><identifier>ISSN: 1939-8018</identifier><identifier>EISSN: 1939-8115</identifier><identifier>DOI: 10.1007/s11265-020-01599-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Approximation ; Cancellation ; Circuits and Systems ; Complexity ; Computation ; Computer Imaging ; Decoding ; Electrical Engineering ; Engineering ; Error correction ; Image Processing and Computer Vision ; Machine learning ; Mathematical analysis ; Measurement ; Parameters ; Pattern Recognition ; Pattern Recognition and Graphics ; Performance degradation ; Perturbation ; Signal to noise ratio ; Signal,Image and Speech Processing ; Vision</subject><ispartof>Journal of signal processing systems, 2021-06, Vol.93 (6), p.631-642</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-c8517e65429e1967bb4df14037c24a0bb57ab8d7b5fe2a774836af894eb7b8493</citedby><cites>FETCH-LOGICAL-c319t-c8517e65429e1967bb4df14037c24a0bb57ab8d7b5fe2a774836af894eb7b8493</cites><orcidid>0000-0002-4428-7467</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Doan, Nghia</creatorcontrib><creatorcontrib>Hashemi, Seyyed Ali</creatorcontrib><creatorcontrib>Ercan, Furkan</creatorcontrib><creatorcontrib>Tonnellier, Thibaud</creatorcontrib><creatorcontrib>Gross, Warren J.</creatorcontrib><title>Neural Successive Cancellation Flip Decoding of Polar Codes</title><title>Journal of signal processing systems</title><addtitle>J Sign Process Syst</addtitle><description>Dynamic successive cancellation flip (DSCF) decoding of polar codes is a powerful algorithm that can achieve the error correction performance of successive cancellation list (SCL) decoding, with an average complexity that is close to that of successive cancellation (SC) decoding at practical signal-to-noise ratio (SNR) regimes. However, DSCF decoding requires costly transcendental computations to calculate a bit-flipping metric, which adversely affect its implementation complexity. In this paper, we first show that a direct application of common approximation schemes on the conventional DSCF decoding results in a significant error-correction performance loss. We then introduce an additive perturbation parameter and propose an approximation scheme which completely removes the need to perform transcendental computations in DSCF decoding. Machine learning (ML) techniques are then utilized to optimize the perturbation parameter of the proposed scheme. Furthermore, a quantization scheme is developed to enable efficient hardware implementation. Simulation results show that when compared with DSCF decoding, the proposed decoder with quantization scheme only experiences a negligible error-correction performance degradation of less that 0.08 dB at a target frame-error-rate (FER) of 10
− 4
, for a polar code of length 512 with 256 information bits. In addition, the bit-flipping metric computation of the proposed decoder reduces up to around 31
%
of the number of additions used by the bit-flipping metric computation of DSCF decoding, without any need to perform costly transcendental computations and multiplications.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Cancellation</subject><subject>Circuits and Systems</subject><subject>Complexity</subject><subject>Computation</subject><subject>Computer Imaging</subject><subject>Decoding</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Error correction</subject><subject>Image Processing and Computer Vision</subject><subject>Machine learning</subject><subject>Mathematical analysis</subject><subject>Measurement</subject><subject>Parameters</subject><subject>Pattern Recognition</subject><subject>Pattern Recognition and Graphics</subject><subject>Performance degradation</subject><subject>Perturbation</subject><subject>Signal to noise ratio</subject><subject>Signal,Image and Speech Processing</subject><subject>Vision</subject><issn>1939-8018</issn><issn>1939-8115</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAURYMoOI7-AVcF19G8fDQJrqQ6KgwqqOuQpOnQoTZjMhXm31ut4s7Vu4t77oOD0CmQcyBEXmQAWgpMKMEEhNZ4t4dmoJnGCkDs_2YC6hAd5bwmpCRSwAxdPoQh2a54HrwPObcfoahs70PX2W0b-2LRtZviOvhYt_2qiE3xFDubiirWIR-jg8Z2OZz83Dl6Xdy8VHd4-Xh7X10tsWegt9grATKUglMdQJfSOV43wAmTnnJLnBPSOlVLJ5pArZRcsdI2SvPgpFNcszk6m3Y3Kb4PIW_NOg6pH18aKlipKOFSji06tXyKOafQmE1q32zaGSDmS5KZJJlRkvmWZHYjxCYoj-V-FdLf9D_UJwdhaTo</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Doan, Nghia</creator><creator>Hashemi, Seyyed Ali</creator><creator>Ercan, Furkan</creator><creator>Tonnellier, Thibaud</creator><creator>Gross, Warren J.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4428-7467</orcidid></search><sort><creationdate>20210601</creationdate><title>Neural Successive Cancellation Flip Decoding of Polar Codes</title><author>Doan, Nghia ; Hashemi, Seyyed Ali ; Ercan, Furkan ; Tonnellier, Thibaud ; Gross, Warren J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-c8517e65429e1967bb4df14037c24a0bb57ab8d7b5fe2a774836af894eb7b8493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Cancellation</topic><topic>Circuits and Systems</topic><topic>Complexity</topic><topic>Computation</topic><topic>Computer Imaging</topic><topic>Decoding</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Error correction</topic><topic>Image Processing and Computer Vision</topic><topic>Machine learning</topic><topic>Mathematical analysis</topic><topic>Measurement</topic><topic>Parameters</topic><topic>Pattern Recognition</topic><topic>Pattern Recognition and Graphics</topic><topic>Performance degradation</topic><topic>Perturbation</topic><topic>Signal to noise ratio</topic><topic>Signal,Image and Speech Processing</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Doan, Nghia</creatorcontrib><creatorcontrib>Hashemi, Seyyed Ali</creatorcontrib><creatorcontrib>Ercan, Furkan</creatorcontrib><creatorcontrib>Tonnellier, Thibaud</creatorcontrib><creatorcontrib>Gross, Warren J.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of signal processing systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Doan, Nghia</au><au>Hashemi, Seyyed Ali</au><au>Ercan, Furkan</au><au>Tonnellier, Thibaud</au><au>Gross, Warren J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural Successive Cancellation Flip Decoding of Polar Codes</atitle><jtitle>Journal of signal processing systems</jtitle><stitle>J Sign Process Syst</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>93</volume><issue>6</issue><spage>631</spage><epage>642</epage><pages>631-642</pages><issn>1939-8018</issn><eissn>1939-8115</eissn><abstract>Dynamic successive cancellation flip (DSCF) decoding of polar codes is a powerful algorithm that can achieve the error correction performance of successive cancellation list (SCL) decoding, with an average complexity that is close to that of successive cancellation (SC) decoding at practical signal-to-noise ratio (SNR) regimes. However, DSCF decoding requires costly transcendental computations to calculate a bit-flipping metric, which adversely affect its implementation complexity. In this paper, we first show that a direct application of common approximation schemes on the conventional DSCF decoding results in a significant error-correction performance loss. We then introduce an additive perturbation parameter and propose an approximation scheme which completely removes the need to perform transcendental computations in DSCF decoding. Machine learning (ML) techniques are then utilized to optimize the perturbation parameter of the proposed scheme. Furthermore, a quantization scheme is developed to enable efficient hardware implementation. Simulation results show that when compared with DSCF decoding, the proposed decoder with quantization scheme only experiences a negligible error-correction performance degradation of less that 0.08 dB at a target frame-error-rate (FER) of 10
− 4
, for a polar code of length 512 with 256 information bits. In addition, the bit-flipping metric computation of the proposed decoder reduces up to around 31
%
of the number of additions used by the bit-flipping metric computation of DSCF decoding, without any need to perform costly transcendental computations and multiplications.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11265-020-01599-y</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4428-7467</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1939-8018 |
ispartof | Journal of signal processing systems, 2021-06, Vol.93 (6), p.631-642 |
issn | 1939-8018 1939-8115 |
language | eng |
recordid | cdi_proquest_journals_2536820477 |
source | Springer Nature |
subjects | Algorithms Approximation Cancellation Circuits and Systems Complexity Computation Computer Imaging Decoding Electrical Engineering Engineering Error correction Image Processing and Computer Vision Machine learning Mathematical analysis Measurement Parameters Pattern Recognition Pattern Recognition and Graphics Performance degradation Perturbation Signal to noise ratio Signal,Image and Speech Processing Vision |
title | Neural Successive Cancellation Flip Decoding of Polar Codes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T10%3A25%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20Successive%20Cancellation%20Flip%20Decoding%20of%20Polar%20Codes&rft.jtitle=Journal%20of%20signal%20processing%20systems&rft.au=Doan,%20Nghia&rft.date=2021-06-01&rft.volume=93&rft.issue=6&rft.spage=631&rft.epage=642&rft.pages=631-642&rft.issn=1939-8018&rft.eissn=1939-8115&rft_id=info:doi/10.1007/s11265-020-01599-y&rft_dat=%3Cproquest_cross%3E2536820477%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-c8517e65429e1967bb4df14037c24a0bb57ab8d7b5fe2a774836af894eb7b8493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2536820477&rft_id=info:pmid/&rfr_iscdi=true |