Loading…

Neural Successive Cancellation Flip Decoding of Polar Codes

Dynamic successive cancellation flip (DSCF) decoding of polar codes is a powerful algorithm that can achieve the error correction performance of successive cancellation list (SCL) decoding, with an average complexity that is close to that of successive cancellation (SC) decoding at practical signal-...

Full description

Saved in:
Bibliographic Details
Published in:Journal of signal processing systems 2021-06, Vol.93 (6), p.631-642
Main Authors: Doan, Nghia, Hashemi, Seyyed Ali, Ercan, Furkan, Tonnellier, Thibaud, Gross, Warren J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-c8517e65429e1967bb4df14037c24a0bb57ab8d7b5fe2a774836af894eb7b8493
cites cdi_FETCH-LOGICAL-c319t-c8517e65429e1967bb4df14037c24a0bb57ab8d7b5fe2a774836af894eb7b8493
container_end_page 642
container_issue 6
container_start_page 631
container_title Journal of signal processing systems
container_volume 93
creator Doan, Nghia
Hashemi, Seyyed Ali
Ercan, Furkan
Tonnellier, Thibaud
Gross, Warren J.
description Dynamic successive cancellation flip (DSCF) decoding of polar codes is a powerful algorithm that can achieve the error correction performance of successive cancellation list (SCL) decoding, with an average complexity that is close to that of successive cancellation (SC) decoding at practical signal-to-noise ratio (SNR) regimes. However, DSCF decoding requires costly transcendental computations to calculate a bit-flipping metric, which adversely affect its implementation complexity. In this paper, we first show that a direct application of common approximation schemes on the conventional DSCF decoding results in a significant error-correction performance loss. We then introduce an additive perturbation parameter and propose an approximation scheme which completely removes the need to perform transcendental computations in DSCF decoding. Machine learning (ML) techniques are then utilized to optimize the perturbation parameter of the proposed scheme. Furthermore, a quantization scheme is developed to enable efficient hardware implementation. Simulation results show that when compared with DSCF decoding, the proposed decoder with quantization scheme only experiences a negligible error-correction performance degradation of less that 0.08 dB at a target frame-error-rate (FER) of 10 − 4 , for a polar code of length 512 with 256 information bits. In addition, the bit-flipping metric computation of the proposed decoder reduces up to around 31 % of the number of additions used by the bit-flipping metric computation of DSCF decoding, without any need to perform costly transcendental computations and multiplications.
doi_str_mv 10.1007/s11265-020-01599-y
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2536820477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2536820477</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-c8517e65429e1967bb4df14037c24a0bb57ab8d7b5fe2a774836af894eb7b8493</originalsourceid><addsrcrecordid>eNp9kE1LxDAURYMoOI7-AVcF19G8fDQJrqQ6KgwqqOuQpOnQoTZjMhXm31ut4s7Vu4t77oOD0CmQcyBEXmQAWgpMKMEEhNZ4t4dmoJnGCkDs_2YC6hAd5bwmpCRSwAxdPoQh2a54HrwPObcfoahs70PX2W0b-2LRtZviOvhYt_2qiE3xFDubiirWIR-jg8Z2OZz83Dl6Xdy8VHd4-Xh7X10tsWegt9grATKUglMdQJfSOV43wAmTnnJLnBPSOlVLJ5pArZRcsdI2SvPgpFNcszk6m3Y3Kb4PIW_NOg6pH18aKlipKOFSji06tXyKOafQmE1q32zaGSDmS5KZJJlRkvmWZHYjxCYoj-V-FdLf9D_UJwdhaTo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2536820477</pqid></control><display><type>article</type><title>Neural Successive Cancellation Flip Decoding of Polar Codes</title><source>Springer Nature</source><creator>Doan, Nghia ; Hashemi, Seyyed Ali ; Ercan, Furkan ; Tonnellier, Thibaud ; Gross, Warren J.</creator><creatorcontrib>Doan, Nghia ; Hashemi, Seyyed Ali ; Ercan, Furkan ; Tonnellier, Thibaud ; Gross, Warren J.</creatorcontrib><description>Dynamic successive cancellation flip (DSCF) decoding of polar codes is a powerful algorithm that can achieve the error correction performance of successive cancellation list (SCL) decoding, with an average complexity that is close to that of successive cancellation (SC) decoding at practical signal-to-noise ratio (SNR) regimes. However, DSCF decoding requires costly transcendental computations to calculate a bit-flipping metric, which adversely affect its implementation complexity. In this paper, we first show that a direct application of common approximation schemes on the conventional DSCF decoding results in a significant error-correction performance loss. We then introduce an additive perturbation parameter and propose an approximation scheme which completely removes the need to perform transcendental computations in DSCF decoding. Machine learning (ML) techniques are then utilized to optimize the perturbation parameter of the proposed scheme. Furthermore, a quantization scheme is developed to enable efficient hardware implementation. Simulation results show that when compared with DSCF decoding, the proposed decoder with quantization scheme only experiences a negligible error-correction performance degradation of less that 0.08 dB at a target frame-error-rate (FER) of 10 − 4 , for a polar code of length 512 with 256 information bits. In addition, the bit-flipping metric computation of the proposed decoder reduces up to around 31 % of the number of additions used by the bit-flipping metric computation of DSCF decoding, without any need to perform costly transcendental computations and multiplications.</description><identifier>ISSN: 1939-8018</identifier><identifier>EISSN: 1939-8115</identifier><identifier>DOI: 10.1007/s11265-020-01599-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Approximation ; Cancellation ; Circuits and Systems ; Complexity ; Computation ; Computer Imaging ; Decoding ; Electrical Engineering ; Engineering ; Error correction ; Image Processing and Computer Vision ; Machine learning ; Mathematical analysis ; Measurement ; Parameters ; Pattern Recognition ; Pattern Recognition and Graphics ; Performance degradation ; Perturbation ; Signal to noise ratio ; Signal,Image and Speech Processing ; Vision</subject><ispartof>Journal of signal processing systems, 2021-06, Vol.93 (6), p.631-642</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-c8517e65429e1967bb4df14037c24a0bb57ab8d7b5fe2a774836af894eb7b8493</citedby><cites>FETCH-LOGICAL-c319t-c8517e65429e1967bb4df14037c24a0bb57ab8d7b5fe2a774836af894eb7b8493</cites><orcidid>0000-0002-4428-7467</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Doan, Nghia</creatorcontrib><creatorcontrib>Hashemi, Seyyed Ali</creatorcontrib><creatorcontrib>Ercan, Furkan</creatorcontrib><creatorcontrib>Tonnellier, Thibaud</creatorcontrib><creatorcontrib>Gross, Warren J.</creatorcontrib><title>Neural Successive Cancellation Flip Decoding of Polar Codes</title><title>Journal of signal processing systems</title><addtitle>J Sign Process Syst</addtitle><description>Dynamic successive cancellation flip (DSCF) decoding of polar codes is a powerful algorithm that can achieve the error correction performance of successive cancellation list (SCL) decoding, with an average complexity that is close to that of successive cancellation (SC) decoding at practical signal-to-noise ratio (SNR) regimes. However, DSCF decoding requires costly transcendental computations to calculate a bit-flipping metric, which adversely affect its implementation complexity. In this paper, we first show that a direct application of common approximation schemes on the conventional DSCF decoding results in a significant error-correction performance loss. We then introduce an additive perturbation parameter and propose an approximation scheme which completely removes the need to perform transcendental computations in DSCF decoding. Machine learning (ML) techniques are then utilized to optimize the perturbation parameter of the proposed scheme. Furthermore, a quantization scheme is developed to enable efficient hardware implementation. Simulation results show that when compared with DSCF decoding, the proposed decoder with quantization scheme only experiences a negligible error-correction performance degradation of less that 0.08 dB at a target frame-error-rate (FER) of 10 − 4 , for a polar code of length 512 with 256 information bits. In addition, the bit-flipping metric computation of the proposed decoder reduces up to around 31 % of the number of additions used by the bit-flipping metric computation of DSCF decoding, without any need to perform costly transcendental computations and multiplications.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Cancellation</subject><subject>Circuits and Systems</subject><subject>Complexity</subject><subject>Computation</subject><subject>Computer Imaging</subject><subject>Decoding</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Error correction</subject><subject>Image Processing and Computer Vision</subject><subject>Machine learning</subject><subject>Mathematical analysis</subject><subject>Measurement</subject><subject>Parameters</subject><subject>Pattern Recognition</subject><subject>Pattern Recognition and Graphics</subject><subject>Performance degradation</subject><subject>Perturbation</subject><subject>Signal to noise ratio</subject><subject>Signal,Image and Speech Processing</subject><subject>Vision</subject><issn>1939-8018</issn><issn>1939-8115</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAURYMoOI7-AVcF19G8fDQJrqQ6KgwqqOuQpOnQoTZjMhXm31ut4s7Vu4t77oOD0CmQcyBEXmQAWgpMKMEEhNZ4t4dmoJnGCkDs_2YC6hAd5bwmpCRSwAxdPoQh2a54HrwPObcfoahs70PX2W0b-2LRtZviOvhYt_2qiE3xFDubiirWIR-jg8Z2OZz83Dl6Xdy8VHd4-Xh7X10tsWegt9grATKUglMdQJfSOV43wAmTnnJLnBPSOlVLJ5pArZRcsdI2SvPgpFNcszk6m3Y3Kb4PIW_NOg6pH18aKlipKOFSji06tXyKOafQmE1q32zaGSDmS5KZJJlRkvmWZHYjxCYoj-V-FdLf9D_UJwdhaTo</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Doan, Nghia</creator><creator>Hashemi, Seyyed Ali</creator><creator>Ercan, Furkan</creator><creator>Tonnellier, Thibaud</creator><creator>Gross, Warren J.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4428-7467</orcidid></search><sort><creationdate>20210601</creationdate><title>Neural Successive Cancellation Flip Decoding of Polar Codes</title><author>Doan, Nghia ; Hashemi, Seyyed Ali ; Ercan, Furkan ; Tonnellier, Thibaud ; Gross, Warren J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-c8517e65429e1967bb4df14037c24a0bb57ab8d7b5fe2a774836af894eb7b8493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Cancellation</topic><topic>Circuits and Systems</topic><topic>Complexity</topic><topic>Computation</topic><topic>Computer Imaging</topic><topic>Decoding</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Error correction</topic><topic>Image Processing and Computer Vision</topic><topic>Machine learning</topic><topic>Mathematical analysis</topic><topic>Measurement</topic><topic>Parameters</topic><topic>Pattern Recognition</topic><topic>Pattern Recognition and Graphics</topic><topic>Performance degradation</topic><topic>Perturbation</topic><topic>Signal to noise ratio</topic><topic>Signal,Image and Speech Processing</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Doan, Nghia</creatorcontrib><creatorcontrib>Hashemi, Seyyed Ali</creatorcontrib><creatorcontrib>Ercan, Furkan</creatorcontrib><creatorcontrib>Tonnellier, Thibaud</creatorcontrib><creatorcontrib>Gross, Warren J.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of signal processing systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Doan, Nghia</au><au>Hashemi, Seyyed Ali</au><au>Ercan, Furkan</au><au>Tonnellier, Thibaud</au><au>Gross, Warren J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural Successive Cancellation Flip Decoding of Polar Codes</atitle><jtitle>Journal of signal processing systems</jtitle><stitle>J Sign Process Syst</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>93</volume><issue>6</issue><spage>631</spage><epage>642</epage><pages>631-642</pages><issn>1939-8018</issn><eissn>1939-8115</eissn><abstract>Dynamic successive cancellation flip (DSCF) decoding of polar codes is a powerful algorithm that can achieve the error correction performance of successive cancellation list (SCL) decoding, with an average complexity that is close to that of successive cancellation (SC) decoding at practical signal-to-noise ratio (SNR) regimes. However, DSCF decoding requires costly transcendental computations to calculate a bit-flipping metric, which adversely affect its implementation complexity. In this paper, we first show that a direct application of common approximation schemes on the conventional DSCF decoding results in a significant error-correction performance loss. We then introduce an additive perturbation parameter and propose an approximation scheme which completely removes the need to perform transcendental computations in DSCF decoding. Machine learning (ML) techniques are then utilized to optimize the perturbation parameter of the proposed scheme. Furthermore, a quantization scheme is developed to enable efficient hardware implementation. Simulation results show that when compared with DSCF decoding, the proposed decoder with quantization scheme only experiences a negligible error-correction performance degradation of less that 0.08 dB at a target frame-error-rate (FER) of 10 − 4 , for a polar code of length 512 with 256 information bits. In addition, the bit-flipping metric computation of the proposed decoder reduces up to around 31 % of the number of additions used by the bit-flipping metric computation of DSCF decoding, without any need to perform costly transcendental computations and multiplications.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11265-020-01599-y</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4428-7467</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1939-8018
ispartof Journal of signal processing systems, 2021-06, Vol.93 (6), p.631-642
issn 1939-8018
1939-8115
language eng
recordid cdi_proquest_journals_2536820477
source Springer Nature
subjects Algorithms
Approximation
Cancellation
Circuits and Systems
Complexity
Computation
Computer Imaging
Decoding
Electrical Engineering
Engineering
Error correction
Image Processing and Computer Vision
Machine learning
Mathematical analysis
Measurement
Parameters
Pattern Recognition
Pattern Recognition and Graphics
Performance degradation
Perturbation
Signal to noise ratio
Signal,Image and Speech Processing
Vision
title Neural Successive Cancellation Flip Decoding of Polar Codes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T10%3A25%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20Successive%20Cancellation%20Flip%20Decoding%20of%20Polar%20Codes&rft.jtitle=Journal%20of%20signal%20processing%20systems&rft.au=Doan,%20Nghia&rft.date=2021-06-01&rft.volume=93&rft.issue=6&rft.spage=631&rft.epage=642&rft.pages=631-642&rft.issn=1939-8018&rft.eissn=1939-8115&rft_id=info:doi/10.1007/s11265-020-01599-y&rft_dat=%3Cproquest_cross%3E2536820477%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-c8517e65429e1967bb4df14037c24a0bb57ab8d7b5fe2a774836af894eb7b8493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2536820477&rft_id=info:pmid/&rfr_iscdi=true