Loading…

Quantitative anisotropies of palaeopermeability in a strike-slip fault damage zone: Insights from micro-CT analysis and numerical simulations

Fracturing and damage around faults related to seismogenesis can enhance hydrothermal fluid percolation, causing mineral precipitation. This study uses hydrothermally sealed microfractures across an ancient exhumed fault to unravel the 3D-spatial distribution of fault damage and related anisotropy i...

Full description

Saved in:
Bibliographic Details
Published in:Tectonophysics 2021-07, Vol.810, p.228873, Article 228873
Main Authors: Gomila, R., Arancibia, G., Nehler, M., Bracke, R., Morata, D., Cembrano, J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a354t-a7b777fb00f48f1a36426e52f2cfd13f2d8fc77f5539b2a13aa34628656540a23
cites cdi_FETCH-LOGICAL-a354t-a7b777fb00f48f1a36426e52f2cfd13f2d8fc77f5539b2a13aa34628656540a23
container_end_page
container_issue
container_start_page 228873
container_title Tectonophysics
container_volume 810
creator Gomila, R.
Arancibia, G.
Nehler, M.
Bracke, R.
Morata, D.
Cembrano, J.
description Fracturing and damage around faults related to seismogenesis can enhance hydrothermal fluid percolation, causing mineral precipitation. This study uses hydrothermally sealed microfractures across an ancient exhumed fault to unravel the 3D-spatial distribution of fault damage and related anisotropy in permeability. We studied the fault damage zone of the Jorgillo Fault, a left-lateral strike-slip fault, exposed by ca. 20 km in the Atacama Fault System, northern Chile. The study was conducted by addressing the 3D-spatial distribution of the microfracture network through X-ray micro-computed tomography and palaeopermeability modeling using a computational fluid dynamic approach, thus assessing mm-scale fault-related permeability tensors. 3D modeled fault-directed permeability ellipsoids on both sides of the fault core are transverse anisotropic, where palaeopermeability (matrix permeability) in the fault-parallel plane is higher than across-strike of the Jorgillo Fault (2.4 and 1.9 times in the eastern and western block of the fault, respectively). Modeled 3D permeability values (ca. 10−11 to 10−15 m2) show a mean overestimation factor of 8.4 of the estimated 2D permeability (ca. 10−9 to 10−12 m2). Permeability anisotropy distribution in the damage zone is related to off-fault damage generation, and could be explained by tip propagation fault growth and dynamic rupture due to earthquakes under the fault-valve mechanism. Whereas the fault would act as an impermeable seal except for post-failure, when it became highly permeable for fluids. •Sealed microfractures 3D-spatial distribution was assessed with X-ray μ-CT.•Fault damage zone palaeopermeability was modeled with the Lattice-Boltzmann Method.•The mean normal components of the permeability tensors are transverse anisotropic.•Along-fault plane palaeopermeability is higher than across-strike of the fault.
doi_str_mv 10.1016/j.tecto.2021.228873
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2536822643</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0040195121001578</els_id><sourcerecordid>2536822643</sourcerecordid><originalsourceid>FETCH-LOGICAL-a354t-a7b777fb00f48f1a36426e52f2cfd13f2d8fc77f5539b2a13aa34628656540a23</originalsourceid><addsrcrecordid>eNp9kE9v1DAQxS1EJZbST8DFEucs_pM4WSQOaEWhUiWE1J6t2WRcZkni4HEqbb8D3xmX5cxp5vDemzc_Id5qtdVKu_fHbcY-x61RRm-N6brWvhAb3bW7yhrnXoqNUrWq9K7Rr8Rr5qNSyunGbcTv7yvMmTJkekQJM3HMKS6ELGOQC4yAccE0IRxopHySNEuQnBP9xIpHWmSAdcxygAkeUD7FGT_Im5np4UdmGVKc5ER9itX-rqTDeGLisgxyXidM1MMomaZ1LPfjzG_ERYCR8erfvBT315_v9l-r229fbvafbiuwTZ0raA9t24aDUqHuggbrauOwMcH0YdA2mKELfRE0jd0dDGgLYGtnOte4plZg7KV4d85dUvy1Imd_jGsq9dibxrrOGFfborJnVenPnDD4JdEE6eS18s_c_dH_5e6fufsz9-L6eHZheeCRMHnuCeceB0pF7IdI__X_AfoGj6M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2536822643</pqid></control><display><type>article</type><title>Quantitative anisotropies of palaeopermeability in a strike-slip fault damage zone: Insights from micro-CT analysis and numerical simulations</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Gomila, R. ; Arancibia, G. ; Nehler, M. ; Bracke, R. ; Morata, D. ; Cembrano, J.</creator><creatorcontrib>Gomila, R. ; Arancibia, G. ; Nehler, M. ; Bracke, R. ; Morata, D. ; Cembrano, J.</creatorcontrib><description>Fracturing and damage around faults related to seismogenesis can enhance hydrothermal fluid percolation, causing mineral precipitation. This study uses hydrothermally sealed microfractures across an ancient exhumed fault to unravel the 3D-spatial distribution of fault damage and related anisotropy in permeability. We studied the fault damage zone of the Jorgillo Fault, a left-lateral strike-slip fault, exposed by ca. 20 km in the Atacama Fault System, northern Chile. The study was conducted by addressing the 3D-spatial distribution of the microfracture network through X-ray micro-computed tomography and palaeopermeability modeling using a computational fluid dynamic approach, thus assessing mm-scale fault-related permeability tensors. 3D modeled fault-directed permeability ellipsoids on both sides of the fault core are transverse anisotropic, where palaeopermeability (matrix permeability) in the fault-parallel plane is higher than across-strike of the Jorgillo Fault (2.4 and 1.9 times in the eastern and western block of the fault, respectively). Modeled 3D permeability values (ca. 10−11 to 10−15 m2) show a mean overestimation factor of 8.4 of the estimated 2D permeability (ca. 10−9 to 10−12 m2). Permeability anisotropy distribution in the damage zone is related to off-fault damage generation, and could be explained by tip propagation fault growth and dynamic rupture due to earthquakes under the fault-valve mechanism. Whereas the fault would act as an impermeable seal except for post-failure, when it became highly permeable for fluids. •Sealed microfractures 3D-spatial distribution was assessed with X-ray μ-CT.•Fault damage zone palaeopermeability was modeled with the Lattice-Boltzmann Method.•The mean normal components of the permeability tensors are transverse anisotropic.•Along-fault plane palaeopermeability is higher than across-strike of the fault.</description><identifier>ISSN: 0040-1951</identifier><identifier>EISSN: 1879-3266</identifier><identifier>DOI: 10.1016/j.tecto.2021.228873</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>3D Permeability modeling ; Anisotropy ; Computational fluid dynamics ; Computed tomography ; Damage ; Distribution ; Earthquakes ; Ellipsoids ; Fault zone palaeopermeability ; Fluids ; Lattice-Boltzmann method ; Mathematical models ; Microfracture ; Numerical simulations ; Percolation ; Permeability ; Permeability anisotropy ; Seismic activity ; Slip ; Spatial distribution ; Tensors ; Three dimensional models ; Tomography ; X-Ray micro-computed tomography</subject><ispartof>Tectonophysics, 2021-07, Vol.810, p.228873, Article 228873</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jul 5, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a354t-a7b777fb00f48f1a36426e52f2cfd13f2d8fc77f5539b2a13aa34628656540a23</citedby><cites>FETCH-LOGICAL-a354t-a7b777fb00f48f1a36426e52f2cfd13f2d8fc77f5539b2a13aa34628656540a23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Gomila, R.</creatorcontrib><creatorcontrib>Arancibia, G.</creatorcontrib><creatorcontrib>Nehler, M.</creatorcontrib><creatorcontrib>Bracke, R.</creatorcontrib><creatorcontrib>Morata, D.</creatorcontrib><creatorcontrib>Cembrano, J.</creatorcontrib><title>Quantitative anisotropies of palaeopermeability in a strike-slip fault damage zone: Insights from micro-CT analysis and numerical simulations</title><title>Tectonophysics</title><description>Fracturing and damage around faults related to seismogenesis can enhance hydrothermal fluid percolation, causing mineral precipitation. This study uses hydrothermally sealed microfractures across an ancient exhumed fault to unravel the 3D-spatial distribution of fault damage and related anisotropy in permeability. We studied the fault damage zone of the Jorgillo Fault, a left-lateral strike-slip fault, exposed by ca. 20 km in the Atacama Fault System, northern Chile. The study was conducted by addressing the 3D-spatial distribution of the microfracture network through X-ray micro-computed tomography and palaeopermeability modeling using a computational fluid dynamic approach, thus assessing mm-scale fault-related permeability tensors. 3D modeled fault-directed permeability ellipsoids on both sides of the fault core are transverse anisotropic, where palaeopermeability (matrix permeability) in the fault-parallel plane is higher than across-strike of the Jorgillo Fault (2.4 and 1.9 times in the eastern and western block of the fault, respectively). Modeled 3D permeability values (ca. 10−11 to 10−15 m2) show a mean overestimation factor of 8.4 of the estimated 2D permeability (ca. 10−9 to 10−12 m2). Permeability anisotropy distribution in the damage zone is related to off-fault damage generation, and could be explained by tip propagation fault growth and dynamic rupture due to earthquakes under the fault-valve mechanism. Whereas the fault would act as an impermeable seal except for post-failure, when it became highly permeable for fluids. •Sealed microfractures 3D-spatial distribution was assessed with X-ray μ-CT.•Fault damage zone palaeopermeability was modeled with the Lattice-Boltzmann Method.•The mean normal components of the permeability tensors are transverse anisotropic.•Along-fault plane palaeopermeability is higher than across-strike of the fault.</description><subject>3D Permeability modeling</subject><subject>Anisotropy</subject><subject>Computational fluid dynamics</subject><subject>Computed tomography</subject><subject>Damage</subject><subject>Distribution</subject><subject>Earthquakes</subject><subject>Ellipsoids</subject><subject>Fault zone palaeopermeability</subject><subject>Fluids</subject><subject>Lattice-Boltzmann method</subject><subject>Mathematical models</subject><subject>Microfracture</subject><subject>Numerical simulations</subject><subject>Percolation</subject><subject>Permeability</subject><subject>Permeability anisotropy</subject><subject>Seismic activity</subject><subject>Slip</subject><subject>Spatial distribution</subject><subject>Tensors</subject><subject>Three dimensional models</subject><subject>Tomography</subject><subject>X-Ray micro-computed tomography</subject><issn>0040-1951</issn><issn>1879-3266</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE9v1DAQxS1EJZbST8DFEucs_pM4WSQOaEWhUiWE1J6t2WRcZkni4HEqbb8D3xmX5cxp5vDemzc_Id5qtdVKu_fHbcY-x61RRm-N6brWvhAb3bW7yhrnXoqNUrWq9K7Rr8Rr5qNSyunGbcTv7yvMmTJkekQJM3HMKS6ELGOQC4yAccE0IRxopHySNEuQnBP9xIpHWmSAdcxygAkeUD7FGT_Im5np4UdmGVKc5ER9itX-rqTDeGLisgxyXidM1MMomaZ1LPfjzG_ERYCR8erfvBT315_v9l-r229fbvafbiuwTZ0raA9t24aDUqHuggbrauOwMcH0YdA2mKELfRE0jd0dDGgLYGtnOte4plZg7KV4d85dUvy1Imd_jGsq9dibxrrOGFfborJnVenPnDD4JdEE6eS18s_c_dH_5e6fufsz9-L6eHZheeCRMHnuCeceB0pF7IdI__X_AfoGj6M</recordid><startdate>20210705</startdate><enddate>20210705</enddate><creator>Gomila, R.</creator><creator>Arancibia, G.</creator><creator>Nehler, M.</creator><creator>Bracke, R.</creator><creator>Morata, D.</creator><creator>Cembrano, J.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope></search><sort><creationdate>20210705</creationdate><title>Quantitative anisotropies of palaeopermeability in a strike-slip fault damage zone: Insights from micro-CT analysis and numerical simulations</title><author>Gomila, R. ; Arancibia, G. ; Nehler, M. ; Bracke, R. ; Morata, D. ; Cembrano, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a354t-a7b777fb00f48f1a36426e52f2cfd13f2d8fc77f5539b2a13aa34628656540a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>3D Permeability modeling</topic><topic>Anisotropy</topic><topic>Computational fluid dynamics</topic><topic>Computed tomography</topic><topic>Damage</topic><topic>Distribution</topic><topic>Earthquakes</topic><topic>Ellipsoids</topic><topic>Fault zone palaeopermeability</topic><topic>Fluids</topic><topic>Lattice-Boltzmann method</topic><topic>Mathematical models</topic><topic>Microfracture</topic><topic>Numerical simulations</topic><topic>Percolation</topic><topic>Permeability</topic><topic>Permeability anisotropy</topic><topic>Seismic activity</topic><topic>Slip</topic><topic>Spatial distribution</topic><topic>Tensors</topic><topic>Three dimensional models</topic><topic>Tomography</topic><topic>X-Ray micro-computed tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gomila, R.</creatorcontrib><creatorcontrib>Arancibia, G.</creatorcontrib><creatorcontrib>Nehler, M.</creatorcontrib><creatorcontrib>Bracke, R.</creatorcontrib><creatorcontrib>Morata, D.</creatorcontrib><creatorcontrib>Cembrano, J.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Tectonophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gomila, R.</au><au>Arancibia, G.</au><au>Nehler, M.</au><au>Bracke, R.</au><au>Morata, D.</au><au>Cembrano, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative anisotropies of palaeopermeability in a strike-slip fault damage zone: Insights from micro-CT analysis and numerical simulations</atitle><jtitle>Tectonophysics</jtitle><date>2021-07-05</date><risdate>2021</risdate><volume>810</volume><spage>228873</spage><pages>228873-</pages><artnum>228873</artnum><issn>0040-1951</issn><eissn>1879-3266</eissn><abstract>Fracturing and damage around faults related to seismogenesis can enhance hydrothermal fluid percolation, causing mineral precipitation. This study uses hydrothermally sealed microfractures across an ancient exhumed fault to unravel the 3D-spatial distribution of fault damage and related anisotropy in permeability. We studied the fault damage zone of the Jorgillo Fault, a left-lateral strike-slip fault, exposed by ca. 20 km in the Atacama Fault System, northern Chile. The study was conducted by addressing the 3D-spatial distribution of the microfracture network through X-ray micro-computed tomography and palaeopermeability modeling using a computational fluid dynamic approach, thus assessing mm-scale fault-related permeability tensors. 3D modeled fault-directed permeability ellipsoids on both sides of the fault core are transverse anisotropic, where palaeopermeability (matrix permeability) in the fault-parallel plane is higher than across-strike of the Jorgillo Fault (2.4 and 1.9 times in the eastern and western block of the fault, respectively). Modeled 3D permeability values (ca. 10−11 to 10−15 m2) show a mean overestimation factor of 8.4 of the estimated 2D permeability (ca. 10−9 to 10−12 m2). Permeability anisotropy distribution in the damage zone is related to off-fault damage generation, and could be explained by tip propagation fault growth and dynamic rupture due to earthquakes under the fault-valve mechanism. Whereas the fault would act as an impermeable seal except for post-failure, when it became highly permeable for fluids. •Sealed microfractures 3D-spatial distribution was assessed with X-ray μ-CT.•Fault damage zone palaeopermeability was modeled with the Lattice-Boltzmann Method.•The mean normal components of the permeability tensors are transverse anisotropic.•Along-fault plane palaeopermeability is higher than across-strike of the fault.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.tecto.2021.228873</doi></addata></record>
fulltext fulltext
identifier ISSN: 0040-1951
ispartof Tectonophysics, 2021-07, Vol.810, p.228873, Article 228873
issn 0040-1951
1879-3266
language eng
recordid cdi_proquest_journals_2536822643
source ScienceDirect Freedom Collection 2022-2024
subjects 3D Permeability modeling
Anisotropy
Computational fluid dynamics
Computed tomography
Damage
Distribution
Earthquakes
Ellipsoids
Fault zone palaeopermeability
Fluids
Lattice-Boltzmann method
Mathematical models
Microfracture
Numerical simulations
Percolation
Permeability
Permeability anisotropy
Seismic activity
Slip
Spatial distribution
Tensors
Three dimensional models
Tomography
X-Ray micro-computed tomography
title Quantitative anisotropies of palaeopermeability in a strike-slip fault damage zone: Insights from micro-CT analysis and numerical simulations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T02%3A55%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20anisotropies%20of%20palaeopermeability%20in%20a%20strike-slip%20fault%20damage%20zone:%20Insights%20from%20micro-CT%20analysis%20and%20numerical%20simulations&rft.jtitle=Tectonophysics&rft.au=Gomila,%20R.&rft.date=2021-07-05&rft.volume=810&rft.spage=228873&rft.pages=228873-&rft.artnum=228873&rft.issn=0040-1951&rft.eissn=1879-3266&rft_id=info:doi/10.1016/j.tecto.2021.228873&rft_dat=%3Cproquest_cross%3E2536822643%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a354t-a7b777fb00f48f1a36426e52f2cfd13f2d8fc77f5539b2a13aa34628656540a23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2536822643&rft_id=info:pmid/&rfr_iscdi=true