Loading…
Quantitative anisotropies of palaeopermeability in a strike-slip fault damage zone: Insights from micro-CT analysis and numerical simulations
Fracturing and damage around faults related to seismogenesis can enhance hydrothermal fluid percolation, causing mineral precipitation. This study uses hydrothermally sealed microfractures across an ancient exhumed fault to unravel the 3D-spatial distribution of fault damage and related anisotropy i...
Saved in:
Published in: | Tectonophysics 2021-07, Vol.810, p.228873, Article 228873 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a354t-a7b777fb00f48f1a36426e52f2cfd13f2d8fc77f5539b2a13aa34628656540a23 |
---|---|
cites | cdi_FETCH-LOGICAL-a354t-a7b777fb00f48f1a36426e52f2cfd13f2d8fc77f5539b2a13aa34628656540a23 |
container_end_page | |
container_issue | |
container_start_page | 228873 |
container_title | Tectonophysics |
container_volume | 810 |
creator | Gomila, R. Arancibia, G. Nehler, M. Bracke, R. Morata, D. Cembrano, J. |
description | Fracturing and damage around faults related to seismogenesis can enhance hydrothermal fluid percolation, causing mineral precipitation. This study uses hydrothermally sealed microfractures across an ancient exhumed fault to unravel the 3D-spatial distribution of fault damage and related anisotropy in permeability. We studied the fault damage zone of the Jorgillo Fault, a left-lateral strike-slip fault, exposed by ca. 20 km in the Atacama Fault System, northern Chile. The study was conducted by addressing the 3D-spatial distribution of the microfracture network through X-ray micro-computed tomography and palaeopermeability modeling using a computational fluid dynamic approach, thus assessing mm-scale fault-related permeability tensors. 3D modeled fault-directed permeability ellipsoids on both sides of the fault core are transverse anisotropic, where palaeopermeability (matrix permeability) in the fault-parallel plane is higher than across-strike of the Jorgillo Fault (2.4 and 1.9 times in the eastern and western block of the fault, respectively). Modeled 3D permeability values (ca. 10−11 to 10−15 m2) show a mean overestimation factor of 8.4 of the estimated 2D permeability (ca. 10−9 to 10−12 m2). Permeability anisotropy distribution in the damage zone is related to off-fault damage generation, and could be explained by tip propagation fault growth and dynamic rupture due to earthquakes under the fault-valve mechanism. Whereas the fault would act as an impermeable seal except for post-failure, when it became highly permeable for fluids.
•Sealed microfractures 3D-spatial distribution was assessed with X-ray μ-CT.•Fault damage zone palaeopermeability was modeled with the Lattice-Boltzmann Method.•The mean normal components of the permeability tensors are transverse anisotropic.•Along-fault plane palaeopermeability is higher than across-strike of the fault. |
doi_str_mv | 10.1016/j.tecto.2021.228873 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2536822643</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0040195121001578</els_id><sourcerecordid>2536822643</sourcerecordid><originalsourceid>FETCH-LOGICAL-a354t-a7b777fb00f48f1a36426e52f2cfd13f2d8fc77f5539b2a13aa34628656540a23</originalsourceid><addsrcrecordid>eNp9kE9v1DAQxS1EJZbST8DFEucs_pM4WSQOaEWhUiWE1J6t2WRcZkni4HEqbb8D3xmX5cxp5vDemzc_Id5qtdVKu_fHbcY-x61RRm-N6brWvhAb3bW7yhrnXoqNUrWq9K7Rr8Rr5qNSyunGbcTv7yvMmTJkekQJM3HMKS6ELGOQC4yAccE0IRxopHySNEuQnBP9xIpHWmSAdcxygAkeUD7FGT_Im5np4UdmGVKc5ER9itX-rqTDeGLisgxyXidM1MMomaZ1LPfjzG_ERYCR8erfvBT315_v9l-r229fbvafbiuwTZ0raA9t24aDUqHuggbrauOwMcH0YdA2mKELfRE0jd0dDGgLYGtnOte4plZg7KV4d85dUvy1Imd_jGsq9dibxrrOGFfborJnVenPnDD4JdEE6eS18s_c_dH_5e6fufsz9-L6eHZheeCRMHnuCeceB0pF7IdI__X_AfoGj6M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2536822643</pqid></control><display><type>article</type><title>Quantitative anisotropies of palaeopermeability in a strike-slip fault damage zone: Insights from micro-CT analysis and numerical simulations</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Gomila, R. ; Arancibia, G. ; Nehler, M. ; Bracke, R. ; Morata, D. ; Cembrano, J.</creator><creatorcontrib>Gomila, R. ; Arancibia, G. ; Nehler, M. ; Bracke, R. ; Morata, D. ; Cembrano, J.</creatorcontrib><description>Fracturing and damage around faults related to seismogenesis can enhance hydrothermal fluid percolation, causing mineral precipitation. This study uses hydrothermally sealed microfractures across an ancient exhumed fault to unravel the 3D-spatial distribution of fault damage and related anisotropy in permeability. We studied the fault damage zone of the Jorgillo Fault, a left-lateral strike-slip fault, exposed by ca. 20 km in the Atacama Fault System, northern Chile. The study was conducted by addressing the 3D-spatial distribution of the microfracture network through X-ray micro-computed tomography and palaeopermeability modeling using a computational fluid dynamic approach, thus assessing mm-scale fault-related permeability tensors. 3D modeled fault-directed permeability ellipsoids on both sides of the fault core are transverse anisotropic, where palaeopermeability (matrix permeability) in the fault-parallel plane is higher than across-strike of the Jorgillo Fault (2.4 and 1.9 times in the eastern and western block of the fault, respectively). Modeled 3D permeability values (ca. 10−11 to 10−15 m2) show a mean overestimation factor of 8.4 of the estimated 2D permeability (ca. 10−9 to 10−12 m2). Permeability anisotropy distribution in the damage zone is related to off-fault damage generation, and could be explained by tip propagation fault growth and dynamic rupture due to earthquakes under the fault-valve mechanism. Whereas the fault would act as an impermeable seal except for post-failure, when it became highly permeable for fluids.
•Sealed microfractures 3D-spatial distribution was assessed with X-ray μ-CT.•Fault damage zone palaeopermeability was modeled with the Lattice-Boltzmann Method.•The mean normal components of the permeability tensors are transverse anisotropic.•Along-fault plane palaeopermeability is higher than across-strike of the fault.</description><identifier>ISSN: 0040-1951</identifier><identifier>EISSN: 1879-3266</identifier><identifier>DOI: 10.1016/j.tecto.2021.228873</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>3D Permeability modeling ; Anisotropy ; Computational fluid dynamics ; Computed tomography ; Damage ; Distribution ; Earthquakes ; Ellipsoids ; Fault zone palaeopermeability ; Fluids ; Lattice-Boltzmann method ; Mathematical models ; Microfracture ; Numerical simulations ; Percolation ; Permeability ; Permeability anisotropy ; Seismic activity ; Slip ; Spatial distribution ; Tensors ; Three dimensional models ; Tomography ; X-Ray micro-computed tomography</subject><ispartof>Tectonophysics, 2021-07, Vol.810, p.228873, Article 228873</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jul 5, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a354t-a7b777fb00f48f1a36426e52f2cfd13f2d8fc77f5539b2a13aa34628656540a23</citedby><cites>FETCH-LOGICAL-a354t-a7b777fb00f48f1a36426e52f2cfd13f2d8fc77f5539b2a13aa34628656540a23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Gomila, R.</creatorcontrib><creatorcontrib>Arancibia, G.</creatorcontrib><creatorcontrib>Nehler, M.</creatorcontrib><creatorcontrib>Bracke, R.</creatorcontrib><creatorcontrib>Morata, D.</creatorcontrib><creatorcontrib>Cembrano, J.</creatorcontrib><title>Quantitative anisotropies of palaeopermeability in a strike-slip fault damage zone: Insights from micro-CT analysis and numerical simulations</title><title>Tectonophysics</title><description>Fracturing and damage around faults related to seismogenesis can enhance hydrothermal fluid percolation, causing mineral precipitation. This study uses hydrothermally sealed microfractures across an ancient exhumed fault to unravel the 3D-spatial distribution of fault damage and related anisotropy in permeability. We studied the fault damage zone of the Jorgillo Fault, a left-lateral strike-slip fault, exposed by ca. 20 km in the Atacama Fault System, northern Chile. The study was conducted by addressing the 3D-spatial distribution of the microfracture network through X-ray micro-computed tomography and palaeopermeability modeling using a computational fluid dynamic approach, thus assessing mm-scale fault-related permeability tensors. 3D modeled fault-directed permeability ellipsoids on both sides of the fault core are transverse anisotropic, where palaeopermeability (matrix permeability) in the fault-parallel plane is higher than across-strike of the Jorgillo Fault (2.4 and 1.9 times in the eastern and western block of the fault, respectively). Modeled 3D permeability values (ca. 10−11 to 10−15 m2) show a mean overestimation factor of 8.4 of the estimated 2D permeability (ca. 10−9 to 10−12 m2). Permeability anisotropy distribution in the damage zone is related to off-fault damage generation, and could be explained by tip propagation fault growth and dynamic rupture due to earthquakes under the fault-valve mechanism. Whereas the fault would act as an impermeable seal except for post-failure, when it became highly permeable for fluids.
•Sealed microfractures 3D-spatial distribution was assessed with X-ray μ-CT.•Fault damage zone palaeopermeability was modeled with the Lattice-Boltzmann Method.•The mean normal components of the permeability tensors are transverse anisotropic.•Along-fault plane palaeopermeability is higher than across-strike of the fault.</description><subject>3D Permeability modeling</subject><subject>Anisotropy</subject><subject>Computational fluid dynamics</subject><subject>Computed tomography</subject><subject>Damage</subject><subject>Distribution</subject><subject>Earthquakes</subject><subject>Ellipsoids</subject><subject>Fault zone palaeopermeability</subject><subject>Fluids</subject><subject>Lattice-Boltzmann method</subject><subject>Mathematical models</subject><subject>Microfracture</subject><subject>Numerical simulations</subject><subject>Percolation</subject><subject>Permeability</subject><subject>Permeability anisotropy</subject><subject>Seismic activity</subject><subject>Slip</subject><subject>Spatial distribution</subject><subject>Tensors</subject><subject>Three dimensional models</subject><subject>Tomography</subject><subject>X-Ray micro-computed tomography</subject><issn>0040-1951</issn><issn>1879-3266</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE9v1DAQxS1EJZbST8DFEucs_pM4WSQOaEWhUiWE1J6t2WRcZkni4HEqbb8D3xmX5cxp5vDemzc_Id5qtdVKu_fHbcY-x61RRm-N6brWvhAb3bW7yhrnXoqNUrWq9K7Rr8Rr5qNSyunGbcTv7yvMmTJkekQJM3HMKS6ELGOQC4yAccE0IRxopHySNEuQnBP9xIpHWmSAdcxygAkeUD7FGT_Im5np4UdmGVKc5ER9itX-rqTDeGLisgxyXidM1MMomaZ1LPfjzG_ERYCR8erfvBT315_v9l-r229fbvafbiuwTZ0raA9t24aDUqHuggbrauOwMcH0YdA2mKELfRE0jd0dDGgLYGtnOte4plZg7KV4d85dUvy1Imd_jGsq9dibxrrOGFfborJnVenPnDD4JdEE6eS18s_c_dH_5e6fufsz9-L6eHZheeCRMHnuCeceB0pF7IdI__X_AfoGj6M</recordid><startdate>20210705</startdate><enddate>20210705</enddate><creator>Gomila, R.</creator><creator>Arancibia, G.</creator><creator>Nehler, M.</creator><creator>Bracke, R.</creator><creator>Morata, D.</creator><creator>Cembrano, J.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope></search><sort><creationdate>20210705</creationdate><title>Quantitative anisotropies of palaeopermeability in a strike-slip fault damage zone: Insights from micro-CT analysis and numerical simulations</title><author>Gomila, R. ; Arancibia, G. ; Nehler, M. ; Bracke, R. ; Morata, D. ; Cembrano, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a354t-a7b777fb00f48f1a36426e52f2cfd13f2d8fc77f5539b2a13aa34628656540a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>3D Permeability modeling</topic><topic>Anisotropy</topic><topic>Computational fluid dynamics</topic><topic>Computed tomography</topic><topic>Damage</topic><topic>Distribution</topic><topic>Earthquakes</topic><topic>Ellipsoids</topic><topic>Fault zone palaeopermeability</topic><topic>Fluids</topic><topic>Lattice-Boltzmann method</topic><topic>Mathematical models</topic><topic>Microfracture</topic><topic>Numerical simulations</topic><topic>Percolation</topic><topic>Permeability</topic><topic>Permeability anisotropy</topic><topic>Seismic activity</topic><topic>Slip</topic><topic>Spatial distribution</topic><topic>Tensors</topic><topic>Three dimensional models</topic><topic>Tomography</topic><topic>X-Ray micro-computed tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gomila, R.</creatorcontrib><creatorcontrib>Arancibia, G.</creatorcontrib><creatorcontrib>Nehler, M.</creatorcontrib><creatorcontrib>Bracke, R.</creatorcontrib><creatorcontrib>Morata, D.</creatorcontrib><creatorcontrib>Cembrano, J.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Tectonophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gomila, R.</au><au>Arancibia, G.</au><au>Nehler, M.</au><au>Bracke, R.</au><au>Morata, D.</au><au>Cembrano, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative anisotropies of palaeopermeability in a strike-slip fault damage zone: Insights from micro-CT analysis and numerical simulations</atitle><jtitle>Tectonophysics</jtitle><date>2021-07-05</date><risdate>2021</risdate><volume>810</volume><spage>228873</spage><pages>228873-</pages><artnum>228873</artnum><issn>0040-1951</issn><eissn>1879-3266</eissn><abstract>Fracturing and damage around faults related to seismogenesis can enhance hydrothermal fluid percolation, causing mineral precipitation. This study uses hydrothermally sealed microfractures across an ancient exhumed fault to unravel the 3D-spatial distribution of fault damage and related anisotropy in permeability. We studied the fault damage zone of the Jorgillo Fault, a left-lateral strike-slip fault, exposed by ca. 20 km in the Atacama Fault System, northern Chile. The study was conducted by addressing the 3D-spatial distribution of the microfracture network through X-ray micro-computed tomography and palaeopermeability modeling using a computational fluid dynamic approach, thus assessing mm-scale fault-related permeability tensors. 3D modeled fault-directed permeability ellipsoids on both sides of the fault core are transverse anisotropic, where palaeopermeability (matrix permeability) in the fault-parallel plane is higher than across-strike of the Jorgillo Fault (2.4 and 1.9 times in the eastern and western block of the fault, respectively). Modeled 3D permeability values (ca. 10−11 to 10−15 m2) show a mean overestimation factor of 8.4 of the estimated 2D permeability (ca. 10−9 to 10−12 m2). Permeability anisotropy distribution in the damage zone is related to off-fault damage generation, and could be explained by tip propagation fault growth and dynamic rupture due to earthquakes under the fault-valve mechanism. Whereas the fault would act as an impermeable seal except for post-failure, when it became highly permeable for fluids.
•Sealed microfractures 3D-spatial distribution was assessed with X-ray μ-CT.•Fault damage zone palaeopermeability was modeled with the Lattice-Boltzmann Method.•The mean normal components of the permeability tensors are transverse anisotropic.•Along-fault plane palaeopermeability is higher than across-strike of the fault.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.tecto.2021.228873</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-1951 |
ispartof | Tectonophysics, 2021-07, Vol.810, p.228873, Article 228873 |
issn | 0040-1951 1879-3266 |
language | eng |
recordid | cdi_proquest_journals_2536822643 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | 3D Permeability modeling Anisotropy Computational fluid dynamics Computed tomography Damage Distribution Earthquakes Ellipsoids Fault zone palaeopermeability Fluids Lattice-Boltzmann method Mathematical models Microfracture Numerical simulations Percolation Permeability Permeability anisotropy Seismic activity Slip Spatial distribution Tensors Three dimensional models Tomography X-Ray micro-computed tomography |
title | Quantitative anisotropies of palaeopermeability in a strike-slip fault damage zone: Insights from micro-CT analysis and numerical simulations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T02%3A55%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20anisotropies%20of%20palaeopermeability%20in%20a%20strike-slip%20fault%20damage%20zone:%20Insights%20from%20micro-CT%20analysis%20and%20numerical%20simulations&rft.jtitle=Tectonophysics&rft.au=Gomila,%20R.&rft.date=2021-07-05&rft.volume=810&rft.spage=228873&rft.pages=228873-&rft.artnum=228873&rft.issn=0040-1951&rft.eissn=1879-3266&rft_id=info:doi/10.1016/j.tecto.2021.228873&rft_dat=%3Cproquest_cross%3E2536822643%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a354t-a7b777fb00f48f1a36426e52f2cfd13f2d8fc77f5539b2a13aa34628656540a23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2536822643&rft_id=info:pmid/&rfr_iscdi=true |