Loading…

Distribution of a Tagged Particle Position in the One-Dimensional Symmetric Simple Exclusion Process with Two-Sided Bernoulli Initial Condition

For the two-sided Bernoulli initial condition with density ρ - (resp. ρ + ) to the left (resp. to the right), we study the distribution of a tagged particle in the one dimensional symmetric simple exclusion process. We obtain a formula for the moment generating function of the associated current in...

Full description

Saved in:
Bibliographic Details
Published in:Communications in mathematical physics 2021-06, Vol.384 (3), p.1409-1444
Main Authors: Imamura, Takashi, Mallick, Kirone, Sasamoto, Tomohiro
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-d4741eaa814ca4cb101565e02c9e204d0d285c1773e7058e6d492576e7ee70de3
cites cdi_FETCH-LOGICAL-c319t-d4741eaa814ca4cb101565e02c9e204d0d285c1773e7058e6d492576e7ee70de3
container_end_page 1444
container_issue 3
container_start_page 1409
container_title Communications in mathematical physics
container_volume 384
creator Imamura, Takashi
Mallick, Kirone
Sasamoto, Tomohiro
description For the two-sided Bernoulli initial condition with density ρ - (resp. ρ + ) to the left (resp. to the right), we study the distribution of a tagged particle in the one dimensional symmetric simple exclusion process. We obtain a formula for the moment generating function of the associated current in terms of a Fredholm determinant. Our arguments are based on a combination of techniques from integrable probability which have been developed recently for studying the asymmetric exclusion process and a subsequent intricate symmetric limit. An expression for the large deviation function of the tagged particle position is obtained, including the case of the stationary measure with uniform density ρ .
doi_str_mv 10.1007/s00220-021-03954-x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2537681321</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2537681321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-d4741eaa814ca4cb101565e02c9e204d0d285c1773e7058e6d492576e7ee70de3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWP98AU8Bz9FJspvtHrVWLQgWWs8hZqc1srupyS5tP4Vf2bQVvHkaePPeb5hHyBWHGw5Q3EYAIYCB4AxkmWdsc0QGPJOCQcnVMRkAcGBScXVKzmL8BIBSKDUg3w8udsG9953zLfULaujcLJdY0akJnbM10qmPbr91Le0-kL62yB5cg21MoqnpbNs0mBiWzlyzSoHxxtb9bkmnwVuMka5d90Hna89mrkroewyt7-va0Umb0Ikx8m21P3JBThamjnj5O8_J2-N4PnpmL69Pk9HdC7OSlx2rsiLjaMyQZ9Zk9p0Dz1WOIGyJArIKKjHMLS8KiQXkQ1RVVoq8UFhgEiqU5-T6wF0F_9Vj7PSn70N6J2qRy0INuRQ8ucTBZYOPMeBCr4JrTNhqDnpXvD4Ur1Pxel-83qSQPIRiMrdLDH_of1I_21SISA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2537681321</pqid></control><display><type>article</type><title>Distribution of a Tagged Particle Position in the One-Dimensional Symmetric Simple Exclusion Process with Two-Sided Bernoulli Initial Condition</title><source>Springer Link</source><creator>Imamura, Takashi ; Mallick, Kirone ; Sasamoto, Tomohiro</creator><creatorcontrib>Imamura, Takashi ; Mallick, Kirone ; Sasamoto, Tomohiro</creatorcontrib><description>For the two-sided Bernoulli initial condition with density ρ - (resp. ρ + ) to the left (resp. to the right), we study the distribution of a tagged particle in the one dimensional symmetric simple exclusion process. We obtain a formula for the moment generating function of the associated current in terms of a Fredholm determinant. Our arguments are based on a combination of techniques from integrable probability which have been developed recently for studying the asymmetric exclusion process and a subsequent intricate symmetric limit. An expression for the large deviation function of the tagged particle position is obtained, including the case of the stationary measure with uniform density ρ .</description><identifier>ISSN: 0010-3616</identifier><identifier>EISSN: 1432-0916</identifier><identifier>DOI: 10.1007/s00220-021-03954-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical and Quantum Gravitation ; Complex Systems ; Density ; Mathematical and Computational Physics ; Mathematical Physics ; Physics ; Physics and Astronomy ; Position measurement ; Quantum Physics ; Relativity Theory ; Theoretical</subject><ispartof>Communications in mathematical physics, 2021-06, Vol.384 (3), p.1409-1444</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-d4741eaa814ca4cb101565e02c9e204d0d285c1773e7058e6d492576e7ee70de3</citedby><cites>FETCH-LOGICAL-c319t-d4741eaa814ca4cb101565e02c9e204d0d285c1773e7058e6d492576e7ee70de3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Imamura, Takashi</creatorcontrib><creatorcontrib>Mallick, Kirone</creatorcontrib><creatorcontrib>Sasamoto, Tomohiro</creatorcontrib><title>Distribution of a Tagged Particle Position in the One-Dimensional Symmetric Simple Exclusion Process with Two-Sided Bernoulli Initial Condition</title><title>Communications in mathematical physics</title><addtitle>Commun. Math. Phys</addtitle><description>For the two-sided Bernoulli initial condition with density ρ - (resp. ρ + ) to the left (resp. to the right), we study the distribution of a tagged particle in the one dimensional symmetric simple exclusion process. We obtain a formula for the moment generating function of the associated current in terms of a Fredholm determinant. Our arguments are based on a combination of techniques from integrable probability which have been developed recently for studying the asymmetric exclusion process and a subsequent intricate symmetric limit. An expression for the large deviation function of the tagged particle position is obtained, including the case of the stationary measure with uniform density ρ .</description><subject>Classical and Quantum Gravitation</subject><subject>Complex Systems</subject><subject>Density</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Position measurement</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Theoretical</subject><issn>0010-3616</issn><issn>1432-0916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWP98AU8Bz9FJspvtHrVWLQgWWs8hZqc1srupyS5tP4Vf2bQVvHkaePPeb5hHyBWHGw5Q3EYAIYCB4AxkmWdsc0QGPJOCQcnVMRkAcGBScXVKzmL8BIBSKDUg3w8udsG9953zLfULaujcLJdY0akJnbM10qmPbr91Le0-kL62yB5cg21MoqnpbNs0mBiWzlyzSoHxxtb9bkmnwVuMka5d90Hna89mrkroewyt7-va0Umb0Ikx8m21P3JBThamjnj5O8_J2-N4PnpmL69Pk9HdC7OSlx2rsiLjaMyQZ9Zk9p0Dz1WOIGyJArIKKjHMLS8KiQXkQ1RVVoq8UFhgEiqU5-T6wF0F_9Vj7PSn70N6J2qRy0INuRQ8ucTBZYOPMeBCr4JrTNhqDnpXvD4Ur1Pxel-83qSQPIRiMrdLDH_of1I_21SISA</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Imamura, Takashi</creator><creator>Mallick, Kirone</creator><creator>Sasamoto, Tomohiro</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210601</creationdate><title>Distribution of a Tagged Particle Position in the One-Dimensional Symmetric Simple Exclusion Process with Two-Sided Bernoulli Initial Condition</title><author>Imamura, Takashi ; Mallick, Kirone ; Sasamoto, Tomohiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-d4741eaa814ca4cb101565e02c9e204d0d285c1773e7058e6d492576e7ee70de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Complex Systems</topic><topic>Density</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Position measurement</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Imamura, Takashi</creatorcontrib><creatorcontrib>Mallick, Kirone</creatorcontrib><creatorcontrib>Sasamoto, Tomohiro</creatorcontrib><collection>CrossRef</collection><jtitle>Communications in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Imamura, Takashi</au><au>Mallick, Kirone</au><au>Sasamoto, Tomohiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distribution of a Tagged Particle Position in the One-Dimensional Symmetric Simple Exclusion Process with Two-Sided Bernoulli Initial Condition</atitle><jtitle>Communications in mathematical physics</jtitle><stitle>Commun. Math. Phys</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>384</volume><issue>3</issue><spage>1409</spage><epage>1444</epage><pages>1409-1444</pages><issn>0010-3616</issn><eissn>1432-0916</eissn><abstract>For the two-sided Bernoulli initial condition with density ρ - (resp. ρ + ) to the left (resp. to the right), we study the distribution of a tagged particle in the one dimensional symmetric simple exclusion process. We obtain a formula for the moment generating function of the associated current in terms of a Fredholm determinant. Our arguments are based on a combination of techniques from integrable probability which have been developed recently for studying the asymmetric exclusion process and a subsequent intricate symmetric limit. An expression for the large deviation function of the tagged particle position is obtained, including the case of the stationary measure with uniform density ρ .</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00220-021-03954-x</doi><tpages>36</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-3616
ispartof Communications in mathematical physics, 2021-06, Vol.384 (3), p.1409-1444
issn 0010-3616
1432-0916
language eng
recordid cdi_proquest_journals_2537681321
source Springer Link
subjects Classical and Quantum Gravitation
Complex Systems
Density
Mathematical and Computational Physics
Mathematical Physics
Physics
Physics and Astronomy
Position measurement
Quantum Physics
Relativity Theory
Theoretical
title Distribution of a Tagged Particle Position in the One-Dimensional Symmetric Simple Exclusion Process with Two-Sided Bernoulli Initial Condition
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T09%3A25%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distribution%20of%20a%20Tagged%20Particle%20Position%20in%20the%20One-Dimensional%20Symmetric%20Simple%20Exclusion%20Process%20with%20Two-Sided%20Bernoulli%20Initial%20Condition&rft.jtitle=Communications%20in%20mathematical%20physics&rft.au=Imamura,%20Takashi&rft.date=2021-06-01&rft.volume=384&rft.issue=3&rft.spage=1409&rft.epage=1444&rft.pages=1409-1444&rft.issn=0010-3616&rft.eissn=1432-0916&rft_id=info:doi/10.1007/s00220-021-03954-x&rft_dat=%3Cproquest_cross%3E2537681321%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-d4741eaa814ca4cb101565e02c9e204d0d285c1773e7058e6d492576e7ee70de3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2537681321&rft_id=info:pmid/&rfr_iscdi=true