Loading…
Distribution of a Tagged Particle Position in the One-Dimensional Symmetric Simple Exclusion Process with Two-Sided Bernoulli Initial Condition
For the two-sided Bernoulli initial condition with density ρ - (resp. ρ + ) to the left (resp. to the right), we study the distribution of a tagged particle in the one dimensional symmetric simple exclusion process. We obtain a formula for the moment generating function of the associated current in...
Saved in:
Published in: | Communications in mathematical physics 2021-06, Vol.384 (3), p.1409-1444 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-d4741eaa814ca4cb101565e02c9e204d0d285c1773e7058e6d492576e7ee70de3 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-d4741eaa814ca4cb101565e02c9e204d0d285c1773e7058e6d492576e7ee70de3 |
container_end_page | 1444 |
container_issue | 3 |
container_start_page | 1409 |
container_title | Communications in mathematical physics |
container_volume | 384 |
creator | Imamura, Takashi Mallick, Kirone Sasamoto, Tomohiro |
description | For the two-sided Bernoulli initial condition with density
ρ
-
(resp.
ρ
+
) to the left (resp. to the right), we study the distribution of a tagged particle in the one dimensional symmetric simple exclusion process. We obtain a formula for the moment generating function of the associated current in terms of a Fredholm determinant. Our arguments are based on a combination of techniques from integrable probability which have been developed recently for studying the asymmetric exclusion process and a subsequent intricate symmetric limit. An expression for the large deviation function of the tagged particle position is obtained, including the case of the stationary measure with uniform density
ρ
. |
doi_str_mv | 10.1007/s00220-021-03954-x |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2537681321</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2537681321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-d4741eaa814ca4cb101565e02c9e204d0d285c1773e7058e6d492576e7ee70de3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWP98AU8Bz9FJspvtHrVWLQgWWs8hZqc1srupyS5tP4Vf2bQVvHkaePPeb5hHyBWHGw5Q3EYAIYCB4AxkmWdsc0QGPJOCQcnVMRkAcGBScXVKzmL8BIBSKDUg3w8udsG9953zLfULaujcLJdY0akJnbM10qmPbr91Le0-kL62yB5cg21MoqnpbNs0mBiWzlyzSoHxxtb9bkmnwVuMka5d90Hna89mrkroewyt7-va0Umb0Ikx8m21P3JBThamjnj5O8_J2-N4PnpmL69Pk9HdC7OSlx2rsiLjaMyQZ9Zk9p0Dz1WOIGyJArIKKjHMLS8KiQXkQ1RVVoq8UFhgEiqU5-T6wF0F_9Vj7PSn70N6J2qRy0INuRQ8ucTBZYOPMeBCr4JrTNhqDnpXvD4Ur1Pxel-83qSQPIRiMrdLDH_of1I_21SISA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2537681321</pqid></control><display><type>article</type><title>Distribution of a Tagged Particle Position in the One-Dimensional Symmetric Simple Exclusion Process with Two-Sided Bernoulli Initial Condition</title><source>Springer Link</source><creator>Imamura, Takashi ; Mallick, Kirone ; Sasamoto, Tomohiro</creator><creatorcontrib>Imamura, Takashi ; Mallick, Kirone ; Sasamoto, Tomohiro</creatorcontrib><description>For the two-sided Bernoulli initial condition with density
ρ
-
(resp.
ρ
+
) to the left (resp. to the right), we study the distribution of a tagged particle in the one dimensional symmetric simple exclusion process. We obtain a formula for the moment generating function of the associated current in terms of a Fredholm determinant. Our arguments are based on a combination of techniques from integrable probability which have been developed recently for studying the asymmetric exclusion process and a subsequent intricate symmetric limit. An expression for the large deviation function of the tagged particle position is obtained, including the case of the stationary measure with uniform density
ρ
.</description><identifier>ISSN: 0010-3616</identifier><identifier>EISSN: 1432-0916</identifier><identifier>DOI: 10.1007/s00220-021-03954-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical and Quantum Gravitation ; Complex Systems ; Density ; Mathematical and Computational Physics ; Mathematical Physics ; Physics ; Physics and Astronomy ; Position measurement ; Quantum Physics ; Relativity Theory ; Theoretical</subject><ispartof>Communications in mathematical physics, 2021-06, Vol.384 (3), p.1409-1444</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-d4741eaa814ca4cb101565e02c9e204d0d285c1773e7058e6d492576e7ee70de3</citedby><cites>FETCH-LOGICAL-c319t-d4741eaa814ca4cb101565e02c9e204d0d285c1773e7058e6d492576e7ee70de3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Imamura, Takashi</creatorcontrib><creatorcontrib>Mallick, Kirone</creatorcontrib><creatorcontrib>Sasamoto, Tomohiro</creatorcontrib><title>Distribution of a Tagged Particle Position in the One-Dimensional Symmetric Simple Exclusion Process with Two-Sided Bernoulli Initial Condition</title><title>Communications in mathematical physics</title><addtitle>Commun. Math. Phys</addtitle><description>For the two-sided Bernoulli initial condition with density
ρ
-
(resp.
ρ
+
) to the left (resp. to the right), we study the distribution of a tagged particle in the one dimensional symmetric simple exclusion process. We obtain a formula for the moment generating function of the associated current in terms of a Fredholm determinant. Our arguments are based on a combination of techniques from integrable probability which have been developed recently for studying the asymmetric exclusion process and a subsequent intricate symmetric limit. An expression for the large deviation function of the tagged particle position is obtained, including the case of the stationary measure with uniform density
ρ
.</description><subject>Classical and Quantum Gravitation</subject><subject>Complex Systems</subject><subject>Density</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Position measurement</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Theoretical</subject><issn>0010-3616</issn><issn>1432-0916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWP98AU8Bz9FJspvtHrVWLQgWWs8hZqc1srupyS5tP4Vf2bQVvHkaePPeb5hHyBWHGw5Q3EYAIYCB4AxkmWdsc0QGPJOCQcnVMRkAcGBScXVKzmL8BIBSKDUg3w8udsG9953zLfULaujcLJdY0akJnbM10qmPbr91Le0-kL62yB5cg21MoqnpbNs0mBiWzlyzSoHxxtb9bkmnwVuMka5d90Hna89mrkroewyt7-va0Umb0Ikx8m21P3JBThamjnj5O8_J2-N4PnpmL69Pk9HdC7OSlx2rsiLjaMyQZ9Zk9p0Dz1WOIGyJArIKKjHMLS8KiQXkQ1RVVoq8UFhgEiqU5-T6wF0F_9Vj7PSn70N6J2qRy0INuRQ8ucTBZYOPMeBCr4JrTNhqDnpXvD4Ur1Pxel-83qSQPIRiMrdLDH_of1I_21SISA</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Imamura, Takashi</creator><creator>Mallick, Kirone</creator><creator>Sasamoto, Tomohiro</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210601</creationdate><title>Distribution of a Tagged Particle Position in the One-Dimensional Symmetric Simple Exclusion Process with Two-Sided Bernoulli Initial Condition</title><author>Imamura, Takashi ; Mallick, Kirone ; Sasamoto, Tomohiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-d4741eaa814ca4cb101565e02c9e204d0d285c1773e7058e6d492576e7ee70de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Complex Systems</topic><topic>Density</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Position measurement</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Imamura, Takashi</creatorcontrib><creatorcontrib>Mallick, Kirone</creatorcontrib><creatorcontrib>Sasamoto, Tomohiro</creatorcontrib><collection>CrossRef</collection><jtitle>Communications in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Imamura, Takashi</au><au>Mallick, Kirone</au><au>Sasamoto, Tomohiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distribution of a Tagged Particle Position in the One-Dimensional Symmetric Simple Exclusion Process with Two-Sided Bernoulli Initial Condition</atitle><jtitle>Communications in mathematical physics</jtitle><stitle>Commun. Math. Phys</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>384</volume><issue>3</issue><spage>1409</spage><epage>1444</epage><pages>1409-1444</pages><issn>0010-3616</issn><eissn>1432-0916</eissn><abstract>For the two-sided Bernoulli initial condition with density
ρ
-
(resp.
ρ
+
) to the left (resp. to the right), we study the distribution of a tagged particle in the one dimensional symmetric simple exclusion process. We obtain a formula for the moment generating function of the associated current in terms of a Fredholm determinant. Our arguments are based on a combination of techniques from integrable probability which have been developed recently for studying the asymmetric exclusion process and a subsequent intricate symmetric limit. An expression for the large deviation function of the tagged particle position is obtained, including the case of the stationary measure with uniform density
ρ
.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00220-021-03954-x</doi><tpages>36</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-3616 |
ispartof | Communications in mathematical physics, 2021-06, Vol.384 (3), p.1409-1444 |
issn | 0010-3616 1432-0916 |
language | eng |
recordid | cdi_proquest_journals_2537681321 |
source | Springer Link |
subjects | Classical and Quantum Gravitation Complex Systems Density Mathematical and Computational Physics Mathematical Physics Physics Physics and Astronomy Position measurement Quantum Physics Relativity Theory Theoretical |
title | Distribution of a Tagged Particle Position in the One-Dimensional Symmetric Simple Exclusion Process with Two-Sided Bernoulli Initial Condition |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T09%3A25%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distribution%20of%20a%20Tagged%20Particle%20Position%20in%20the%20One-Dimensional%20Symmetric%20Simple%20Exclusion%20Process%20with%20Two-Sided%20Bernoulli%20Initial%20Condition&rft.jtitle=Communications%20in%20mathematical%20physics&rft.au=Imamura,%20Takashi&rft.date=2021-06-01&rft.volume=384&rft.issue=3&rft.spage=1409&rft.epage=1444&rft.pages=1409-1444&rft.issn=0010-3616&rft.eissn=1432-0916&rft_id=info:doi/10.1007/s00220-021-03954-x&rft_dat=%3Cproquest_cross%3E2537681321%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-d4741eaa814ca4cb101565e02c9e204d0d285c1773e7058e6d492576e7ee70de3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2537681321&rft_id=info:pmid/&rfr_iscdi=true |