Loading…
Apatite halogen and hydrogen isotope constraints on the conditions of hydrothermal alteration in carbonaceous chondrites
Apatite has been widely used for assessing the volatile inventory and hydrothermal fluid compositions of asteroidal and planetary bodies. We report the OH, F, and Cl abundances, as well as the hydrogen isotope composition, of apatite in the CM1‐2 chondrite Boriskino and in the C1‐ungrouped Bench Cra...
Saved in:
Published in: | Meteoritics & planetary science 2021-04, Vol.56 (4), p.809-828 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Apatite has been widely used for assessing the volatile inventory and hydrothermal fluid compositions of asteroidal and planetary bodies. We report the OH, F, and Cl abundances, as well as the hydrogen isotope composition, of apatite in the CM1‐2 chondrite Boriskino and in the C1‐ungrouped Bench Crater meteorite. Apatite in both meteorites is halogen‐poor, close to the hydroxylapatite endmember composition, and characterized by average δDSMOW values of −226 ± 59% and 233 ± 92%, respectively. Compared to apatite, the matrix in Bench Crater is depleted in D with a δDSMOW value of −16 ± 119‰. Comparing apatite and water H isotope compositions yields similar apatite‐water D/H fractionation ΔDApatite‐Water of approximately 120–150‰ for both chondrites, suggesting that apatite formed at similar temperatures. Combining a lattice strain partitioning model with apatite F and Cl abundances in Boriskino and Bench Crater yields low F and Cl abundances |
---|---|
ISSN: | 1086-9379 1945-5100 |
DOI: | 10.1111/maps.13639 |