Loading…
Motion Adaptation Based on Learning the Manifold of Task and Dynamic Movement Primitive Parameters
Dynamic movement primitives (DMP) are motion building blocks suitable for real-world tasks. We suggest a methodology for learning the manifold of task and DMP parameters, which facilitates runtime adaptation to changes in task requirements while ensuring predictable and robust performance. For effic...
Saved in:
Published in: | Robotica 2021-07, Vol.39 (7), p.1299-1315 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c360t-91ddd778f58182a2d891e2e0857fb0f3229d9b9b541c2d33d7e29b9b1448c7cd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c360t-91ddd778f58182a2d891e2e0857fb0f3229d9b9b541c2d33d7e29b9b1448c7cd3 |
container_end_page | 1315 |
container_issue | 7 |
container_start_page | 1299 |
container_title | Robotica |
container_volume | 39 |
creator | Cohen, Yosef Bar-Shira, Or Berman, Sigal |
description | Dynamic movement primitives (DMP) are motion building blocks suitable for real-world tasks. We suggest a methodology for learning the manifold of task and DMP parameters, which facilitates runtime adaptation to changes in task requirements while ensuring predictable and robust performance. For efficient learning, the parameter space is analyzed using principal component analysis and locally linear embedding. Two manifold learning methods: kernel estimation and deep neural networks, are investigated for a ball throwing task in simulation and in a physical environment. Low runtime estimation errors are obtained for both learning methods, with an advantage to kernel estimation when data sets are small. |
doi_str_mv | 10.1017/S0263574720001186 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2537907901</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0263574720001186</cupid><sourcerecordid>2537907901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-91ddd778f58182a2d891e2e0857fb0f3229d9b9b541c2d33d7e29b9b1448c7cd3</originalsourceid><addsrcrecordid>eNp1UN9LwzAQDqLgnP4BvgV8ruaStkkf53QqbDhwPpe0SWfmms4kG-y_N3UDH0Q4uDu-H3d8CF0DuQUC_O6N0JxlPOWUEAIg8hM0gDQvEpHn4hQNejjp8XN04f0qchikfICqWRdMZ_FIyU2QP-O99FrhOEy1dNbYJQ4fGs-kNU23jkCDF9J_YmkVfthb2Zoaz7qdbrUNeO5Ma4LZaTyXTrY6aOcv0Vkj115fHfsQvU8eF-PnZPr69DIeTZOa5SQkBSilOBdNJkBQSZUoQFNNRMabijSM0kIVVVFlKdRUMaa4pv0OaSpqXis2RDcH343rvrbah3LVbZ2NJ0uaMV6QWBBZcGDVrvPe6abcxJ-l25dAyj7K8k-UUcOOGtlWzqil_rX-X_UN2hB1Kg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2537907901</pqid></control><display><type>article</type><title>Motion Adaptation Based on Learning the Manifold of Task and Dynamic Movement Primitive Parameters</title><source>Cambridge Journals Online</source><creator>Cohen, Yosef ; Bar-Shira, Or ; Berman, Sigal</creator><creatorcontrib>Cohen, Yosef ; Bar-Shira, Or ; Berman, Sigal</creatorcontrib><description>Dynamic movement primitives (DMP) are motion building blocks suitable for real-world tasks. We suggest a methodology for learning the manifold of task and DMP parameters, which facilitates runtime adaptation to changes in task requirements while ensuring predictable and robust performance. For efficient learning, the parameter space is analyzed using principal component analysis and locally linear embedding. Two manifold learning methods: kernel estimation and deep neural networks, are investigated for a ball throwing task in simulation and in a physical environment. Low runtime estimation errors are obtained for both learning methods, with an advantage to kernel estimation when data sets are small.</description><identifier>ISSN: 0263-5747</identifier><identifier>EISSN: 1469-8668</identifier><identifier>DOI: 10.1017/S0263574720001186</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Adaptation ; Artificial neural networks ; Kernels ; Machine learning ; Manifolds (mathematics) ; Movement ; Parameters ; Principal components analysis ; Teaching methods ; Throwing</subject><ispartof>Robotica, 2021-07, Vol.39 (7), p.1299-1315</ispartof><rights>The Author(s), 2020. Published by Cambridge University Press</rights><rights>The Author(s), 2020. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at: https://uk.sagepub.com/en-gb/eur/reusing-open-access-and-sage-choice-content</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-91ddd778f58182a2d891e2e0857fb0f3229d9b9b541c2d33d7e29b9b1448c7cd3</citedby><cites>FETCH-LOGICAL-c360t-91ddd778f58182a2d891e2e0857fb0f3229d9b9b541c2d33d7e29b9b1448c7cd3</cites><orcidid>0000-0001-7717-7259</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0263574720001186/type/journal_article$$EHTML$$P50$$Gcambridge$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,72832</link.rule.ids></links><search><creatorcontrib>Cohen, Yosef</creatorcontrib><creatorcontrib>Bar-Shira, Or</creatorcontrib><creatorcontrib>Berman, Sigal</creatorcontrib><title>Motion Adaptation Based on Learning the Manifold of Task and Dynamic Movement Primitive Parameters</title><title>Robotica</title><addtitle>Robotica</addtitle><description>Dynamic movement primitives (DMP) are motion building blocks suitable for real-world tasks. We suggest a methodology for learning the manifold of task and DMP parameters, which facilitates runtime adaptation to changes in task requirements while ensuring predictable and robust performance. For efficient learning, the parameter space is analyzed using principal component analysis and locally linear embedding. Two manifold learning methods: kernel estimation and deep neural networks, are investigated for a ball throwing task in simulation and in a physical environment. Low runtime estimation errors are obtained for both learning methods, with an advantage to kernel estimation when data sets are small.</description><subject>Adaptation</subject><subject>Artificial neural networks</subject><subject>Kernels</subject><subject>Machine learning</subject><subject>Manifolds (mathematics)</subject><subject>Movement</subject><subject>Parameters</subject><subject>Principal components analysis</subject><subject>Teaching methods</subject><subject>Throwing</subject><issn>0263-5747</issn><issn>1469-8668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1UN9LwzAQDqLgnP4BvgV8ruaStkkf53QqbDhwPpe0SWfmms4kG-y_N3UDH0Q4uDu-H3d8CF0DuQUC_O6N0JxlPOWUEAIg8hM0gDQvEpHn4hQNejjp8XN04f0qchikfICqWRdMZ_FIyU2QP-O99FrhOEy1dNbYJQ4fGs-kNU23jkCDF9J_YmkVfthb2Zoaz7qdbrUNeO5Ma4LZaTyXTrY6aOcv0Vkj115fHfsQvU8eF-PnZPr69DIeTZOa5SQkBSilOBdNJkBQSZUoQFNNRMabijSM0kIVVVFlKdRUMaa4pv0OaSpqXis2RDcH343rvrbah3LVbZ2NJ0uaMV6QWBBZcGDVrvPe6abcxJ-l25dAyj7K8k-UUcOOGtlWzqil_rX-X_UN2hB1Kg</recordid><startdate>202107</startdate><enddate>202107</enddate><creator>Cohen, Yosef</creator><creator>Bar-Shira, Or</creator><creator>Berman, Sigal</creator><general>Cambridge University Press</general><scope>IKXGN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-7717-7259</orcidid></search><sort><creationdate>202107</creationdate><title>Motion Adaptation Based on Learning the Manifold of Task and Dynamic Movement Primitive Parameters</title><author>Cohen, Yosef ; Bar-Shira, Or ; Berman, Sigal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-91ddd778f58182a2d891e2e0857fb0f3229d9b9b541c2d33d7e29b9b1448c7cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptation</topic><topic>Artificial neural networks</topic><topic>Kernels</topic><topic>Machine learning</topic><topic>Manifolds (mathematics)</topic><topic>Movement</topic><topic>Parameters</topic><topic>Principal components analysis</topic><topic>Teaching methods</topic><topic>Throwing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cohen, Yosef</creatorcontrib><creatorcontrib>Bar-Shira, Or</creatorcontrib><creatorcontrib>Berman, Sigal</creatorcontrib><collection>CUP_剑桥大学出版社OA刊</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Robotica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cohen, Yosef</au><au>Bar-Shira, Or</au><au>Berman, Sigal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Motion Adaptation Based on Learning the Manifold of Task and Dynamic Movement Primitive Parameters</atitle><jtitle>Robotica</jtitle><addtitle>Robotica</addtitle><date>2021-07</date><risdate>2021</risdate><volume>39</volume><issue>7</issue><spage>1299</spage><epage>1315</epage><pages>1299-1315</pages><issn>0263-5747</issn><eissn>1469-8668</eissn><abstract>Dynamic movement primitives (DMP) are motion building blocks suitable for real-world tasks. We suggest a methodology for learning the manifold of task and DMP parameters, which facilitates runtime adaptation to changes in task requirements while ensuring predictable and robust performance. For efficient learning, the parameter space is analyzed using principal component analysis and locally linear embedding. Two manifold learning methods: kernel estimation and deep neural networks, are investigated for a ball throwing task in simulation and in a physical environment. Low runtime estimation errors are obtained for both learning methods, with an advantage to kernel estimation when data sets are small.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0263574720001186</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-7717-7259</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0263-5747 |
ispartof | Robotica, 2021-07, Vol.39 (7), p.1299-1315 |
issn | 0263-5747 1469-8668 |
language | eng |
recordid | cdi_proquest_journals_2537907901 |
source | Cambridge Journals Online |
subjects | Adaptation Artificial neural networks Kernels Machine learning Manifolds (mathematics) Movement Parameters Principal components analysis Teaching methods Throwing |
title | Motion Adaptation Based on Learning the Manifold of Task and Dynamic Movement Primitive Parameters |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A11%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Motion%20Adaptation%20Based%20on%20Learning%20the%20Manifold%20of%20Task%20and%20Dynamic%20Movement%20Primitive%20Parameters&rft.jtitle=Robotica&rft.au=Cohen,%20Yosef&rft.date=2021-07&rft.volume=39&rft.issue=7&rft.spage=1299&rft.epage=1315&rft.pages=1299-1315&rft.issn=0263-5747&rft.eissn=1469-8668&rft_id=info:doi/10.1017/S0263574720001186&rft_dat=%3Cproquest_cross%3E2537907901%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c360t-91ddd778f58182a2d891e2e0857fb0f3229d9b9b541c2d33d7e29b9b1448c7cd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2537907901&rft_id=info:pmid/&rft_cupid=10_1017_S0263574720001186&rfr_iscdi=true |