Loading…
Evaluating the physical and biogeochemical state of the global ocean component of UKESM1 in CMIP6 historical simulations
The ocean plays a key role in modulating the climate of the Earth system (ES). At the present time it is also a major sink both for the carbon dioxide (CO2) released by human activities and for the excess heat driven by the resulting atmospheric greenhouse effect. Understanding the ocean's role...
Saved in:
Published in: | Geoscientific Model Development 2021-06, Vol.14 (6), p.3437-3472 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c480t-e6fc0707c00605e4c92f72b9d19b5c5be5bfbcbbae76aa2a33d4a0e31535eaf83 |
---|---|
cites | cdi_FETCH-LOGICAL-c480t-e6fc0707c00605e4c92f72b9d19b5c5be5bfbcbbae76aa2a33d4a0e31535eaf83 |
container_end_page | 3472 |
container_issue | 6 |
container_start_page | 3437 |
container_title | Geoscientific Model Development |
container_volume | 14 |
creator | Yool, Andrew Palmiéri, Julien Jones, Colin G de Mora, Lee Kuhlbrodt, Till Popova, Ekatarina E Nurser, A. J. George Hirschi, Joel Blaker, Adam T Coward, Andrew C Blockley, Edward W Sellar, Alistair A |
description | The ocean plays a key role in modulating the climate of the Earth system (ES). At the present time it is also a major sink both for the carbon dioxide (CO2) released by human activities and for the excess heat driven by the resulting atmospheric greenhouse effect. Understanding the ocean's role in these processes is critical for model projections of future change and its potential impacts on human societies. A necessary first step in assessing the credibility of such future projections is an evaluation of their performance against the present state of the ocean. Here we use a range of observational fields to validate the physical and biogeochemical performance of the ocean component of UKESM1, a new Earth system model (ESM) for CMIP6 built upon the HadGEM3-GC3.1 physical climate model. Analysis focuses on the realism of the ocean's physical state and circulation, its key elemental cycles, and its marine productivity. UKESM1 generally performs well across a broad spectrum of properties, but it exhibits a number of notable biases. Physically, these include a global warm bias inherited from model spin-up, excess northern sea ice but insufficient southern sea ice and sluggish interior circulation. Biogeochemical biases found include shallow remineralization of sinking organic matter, excessive iron stress in regions such as the equatorial Pacific, and generally lower surface alkalinity that results in decreased surface and interior dissolved inorganic carbon (DIC) concentrations. The mechanisms driving these biases are explored to identify consequences for the behaviour of UKESM1 under future climate change scenarios and avenues for model improvement. Finally, across key biogeochemical properties, UKESM1 improves in performance relative to its CMIP5 precursor and performs well alongside its fellow members of the CMIP6 ensemble. |
doi_str_mv | 10.5194/gmd-14-3437-2021 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2537951835</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A664519307</galeid><doaj_id>oai_doaj_org_article_f32444b02fc6432facfff18bad2df8ec</doaj_id><sourcerecordid>A664519307</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-e6fc0707c00605e4c92f72b9d19b5c5be5bfbcbbae76aa2a33d4a0e31535eaf83</originalsourceid><addsrcrecordid>eNptkktv1DAUhSNEJUrpnmUkVixS_E6yrEYDjGgF6mNtXTt2xqMkHmynav89zgwCRkJe2Dr-fHx9fYriPUZXHLfsUz92FWYVZbSuCCL4VXGO2xZXrUD09T_rN8XbGHcIibYW9XnxvH6CYYbkpr5MW1Puty_RaRhKmLpSOd8br7dmPEgxQTKltwewH7zKmtcGplL7ce8nM6Vl9_Hb-v4Wl24qV7ebH6Lcuph8ODq4cR7yZX6K74ozC0M0l7_ni-Lx8_ph9bW6-f5ls7q-qTRrUKqMsBrVqNa5YsQN0y2xNVFth1vFNVeGK6u0UmBqAUCA0o4BMhRzyg3Yhl4Um6Nv52En98GNEF6kBycPgg-9hJCcHoy0lDDGFCJWC0aJBW2txY2CjnS2MTp7fTh67YP_OZuY5M7PYcrlS8Jp3XLcUP6X6iGbusn6FECPLmp5LQTLv0VRnamr_1B5dEu3czOty_rJgY8nBzKTzHPqYY5Rbu7vTll0ZHXwMQZj_zwcI7nERea4SMzkEhe5xIX-AhKfsq8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2537951835</pqid></control><display><type>article</type><title>Evaluating the physical and biogeochemical state of the global ocean component of UKESM1 in CMIP6 historical simulations</title><source>Publicly Available Content Database</source><creator>Yool, Andrew ; Palmiéri, Julien ; Jones, Colin G ; de Mora, Lee ; Kuhlbrodt, Till ; Popova, Ekatarina E ; Nurser, A. J. George ; Hirschi, Joel ; Blaker, Adam T ; Coward, Andrew C ; Blockley, Edward W ; Sellar, Alistair A</creator><creatorcontrib>Yool, Andrew ; Palmiéri, Julien ; Jones, Colin G ; de Mora, Lee ; Kuhlbrodt, Till ; Popova, Ekatarina E ; Nurser, A. J. George ; Hirschi, Joel ; Blaker, Adam T ; Coward, Andrew C ; Blockley, Edward W ; Sellar, Alistair A</creatorcontrib><description>The ocean plays a key role in modulating the climate of the Earth system (ES). At the present time it is also a major sink both for the carbon dioxide (CO2) released by human activities and for the excess heat driven by the resulting atmospheric greenhouse effect. Understanding the ocean's role in these processes is critical for model projections of future change and its potential impacts on human societies. A necessary first step in assessing the credibility of such future projections is an evaluation of their performance against the present state of the ocean. Here we use a range of observational fields to validate the physical and biogeochemical performance of the ocean component of UKESM1, a new Earth system model (ESM) for CMIP6 built upon the HadGEM3-GC3.1 physical climate model. Analysis focuses on the realism of the ocean's physical state and circulation, its key elemental cycles, and its marine productivity. UKESM1 generally performs well across a broad spectrum of properties, but it exhibits a number of notable biases. Physically, these include a global warm bias inherited from model spin-up, excess northern sea ice but insufficient southern sea ice and sluggish interior circulation. Biogeochemical biases found include shallow remineralization of sinking organic matter, excessive iron stress in regions such as the equatorial Pacific, and generally lower surface alkalinity that results in decreased surface and interior dissolved inorganic carbon (DIC) concentrations. The mechanisms driving these biases are explored to identify consequences for the behaviour of UKESM1 under future climate change scenarios and avenues for model improvement. Finally, across key biogeochemical properties, UKESM1 improves in performance relative to its CMIP5 precursor and performs well alongside its fellow members of the CMIP6 ensemble.</description><identifier>ISSN: 1991-9603</identifier><identifier>ISSN: 1991-959X</identifier><identifier>ISSN: 1991-962X</identifier><identifier>EISSN: 1991-9603</identifier><identifier>EISSN: 1991-962X</identifier><identifier>DOI: 10.5194/gmd-14-3437-2021</identifier><language>eng</language><publisher>Katlenburg-Lindau: Copernicus GmbH</publisher><subject>Aerosols ; Alkalinity ; Analysis ; Atmosphere ; Atmospheric effects ; Atmospheric greenhouse effect ; Biogeochemistry ; Carbon dioxide ; Chemistry ; Climate change ; Climate change scenarios ; Climate models ; Climatic analysis ; Dissolved inorganic carbon ; Earth ; Ecosystems ; Equatorial regions ; Future climates ; General circulation models ; Global warming ; Greenhouse effect ; Ocean circulation ; Oceans ; Organic matter ; Performance evaluation ; Physical states ; Properties ; Remineralization ; Sea ice ; Simulation</subject><ispartof>Geoscientific Model Development, 2021-06, Vol.14 (6), p.3437-3472</ispartof><rights>COPYRIGHT 2021 Copernicus GmbH</rights><rights>2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-e6fc0707c00605e4c92f72b9d19b5c5be5bfbcbbae76aa2a33d4a0e31535eaf83</citedby><cites>FETCH-LOGICAL-c480t-e6fc0707c00605e4c92f72b9d19b5c5be5bfbcbbae76aa2a33d4a0e31535eaf83</cites><orcidid>0000-0002-0226-5243 ; 0000-0002-5080-3149 ; 0000-0001-8653-9258 ; 0000-0002-9111-7700 ; 0000-0002-9879-2776 ; 0000-0003-2328-6729 ; 0000-0002-0489-4238 ; 0000-0002-7221-8127 ; 0000-0003-1481-3697 ; 0000-0001-5454-0131 ; 0000-0002-2955-7254</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2537951835/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2537951835?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25733,27903,27904,36991,44569,74872</link.rule.ids></links><search><creatorcontrib>Yool, Andrew</creatorcontrib><creatorcontrib>Palmiéri, Julien</creatorcontrib><creatorcontrib>Jones, Colin G</creatorcontrib><creatorcontrib>de Mora, Lee</creatorcontrib><creatorcontrib>Kuhlbrodt, Till</creatorcontrib><creatorcontrib>Popova, Ekatarina E</creatorcontrib><creatorcontrib>Nurser, A. J. George</creatorcontrib><creatorcontrib>Hirschi, Joel</creatorcontrib><creatorcontrib>Blaker, Adam T</creatorcontrib><creatorcontrib>Coward, Andrew C</creatorcontrib><creatorcontrib>Blockley, Edward W</creatorcontrib><creatorcontrib>Sellar, Alistair A</creatorcontrib><title>Evaluating the physical and biogeochemical state of the global ocean component of UKESM1 in CMIP6 historical simulations</title><title>Geoscientific Model Development</title><description>The ocean plays a key role in modulating the climate of the Earth system (ES). At the present time it is also a major sink both for the carbon dioxide (CO2) released by human activities and for the excess heat driven by the resulting atmospheric greenhouse effect. Understanding the ocean's role in these processes is critical for model projections of future change and its potential impacts on human societies. A necessary first step in assessing the credibility of such future projections is an evaluation of their performance against the present state of the ocean. Here we use a range of observational fields to validate the physical and biogeochemical performance of the ocean component of UKESM1, a new Earth system model (ESM) for CMIP6 built upon the HadGEM3-GC3.1 physical climate model. Analysis focuses on the realism of the ocean's physical state and circulation, its key elemental cycles, and its marine productivity. UKESM1 generally performs well across a broad spectrum of properties, but it exhibits a number of notable biases. Physically, these include a global warm bias inherited from model spin-up, excess northern sea ice but insufficient southern sea ice and sluggish interior circulation. Biogeochemical biases found include shallow remineralization of sinking organic matter, excessive iron stress in regions such as the equatorial Pacific, and generally lower surface alkalinity that results in decreased surface and interior dissolved inorganic carbon (DIC) concentrations. The mechanisms driving these biases are explored to identify consequences for the behaviour of UKESM1 under future climate change scenarios and avenues for model improvement. Finally, across key biogeochemical properties, UKESM1 improves in performance relative to its CMIP5 precursor and performs well alongside its fellow members of the CMIP6 ensemble.</description><subject>Aerosols</subject><subject>Alkalinity</subject><subject>Analysis</subject><subject>Atmosphere</subject><subject>Atmospheric effects</subject><subject>Atmospheric greenhouse effect</subject><subject>Biogeochemistry</subject><subject>Carbon dioxide</subject><subject>Chemistry</subject><subject>Climate change</subject><subject>Climate change scenarios</subject><subject>Climate models</subject><subject>Climatic analysis</subject><subject>Dissolved inorganic carbon</subject><subject>Earth</subject><subject>Ecosystems</subject><subject>Equatorial regions</subject><subject>Future climates</subject><subject>General circulation models</subject><subject>Global warming</subject><subject>Greenhouse effect</subject><subject>Ocean circulation</subject><subject>Oceans</subject><subject>Organic matter</subject><subject>Performance evaluation</subject><subject>Physical states</subject><subject>Properties</subject><subject>Remineralization</subject><subject>Sea ice</subject><subject>Simulation</subject><issn>1991-9603</issn><issn>1991-959X</issn><issn>1991-962X</issn><issn>1991-9603</issn><issn>1991-962X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkktv1DAUhSNEJUrpnmUkVixS_E6yrEYDjGgF6mNtXTt2xqMkHmynav89zgwCRkJe2Dr-fHx9fYriPUZXHLfsUz92FWYVZbSuCCL4VXGO2xZXrUD09T_rN8XbGHcIibYW9XnxvH6CYYbkpr5MW1Puty_RaRhKmLpSOd8br7dmPEgxQTKltwewH7zKmtcGplL7ce8nM6Vl9_Hb-v4Wl24qV7ebH6Lcuph8ODq4cR7yZX6K74ozC0M0l7_ni-Lx8_ph9bW6-f5ls7q-qTRrUKqMsBrVqNa5YsQN0y2xNVFth1vFNVeGK6u0UmBqAUCA0o4BMhRzyg3Yhl4Um6Nv52En98GNEF6kBycPgg-9hJCcHoy0lDDGFCJWC0aJBW2txY2CjnS2MTp7fTh67YP_OZuY5M7PYcrlS8Jp3XLcUP6X6iGbusn6FECPLmp5LQTLv0VRnamr_1B5dEu3czOty_rJgY8nBzKTzHPqYY5Rbu7vTll0ZHXwMQZj_zwcI7nERea4SMzkEhe5xIX-AhKfsq8</recordid><startdate>20210608</startdate><enddate>20210608</enddate><creator>Yool, Andrew</creator><creator>Palmiéri, Julien</creator><creator>Jones, Colin G</creator><creator>de Mora, Lee</creator><creator>Kuhlbrodt, Till</creator><creator>Popova, Ekatarina E</creator><creator>Nurser, A. J. George</creator><creator>Hirschi, Joel</creator><creator>Blaker, Adam T</creator><creator>Coward, Andrew C</creator><creator>Blockley, Edward W</creator><creator>Sellar, Alistair A</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0226-5243</orcidid><orcidid>https://orcid.org/0000-0002-5080-3149</orcidid><orcidid>https://orcid.org/0000-0001-8653-9258</orcidid><orcidid>https://orcid.org/0000-0002-9111-7700</orcidid><orcidid>https://orcid.org/0000-0002-9879-2776</orcidid><orcidid>https://orcid.org/0000-0003-2328-6729</orcidid><orcidid>https://orcid.org/0000-0002-0489-4238</orcidid><orcidid>https://orcid.org/0000-0002-7221-8127</orcidid><orcidid>https://orcid.org/0000-0003-1481-3697</orcidid><orcidid>https://orcid.org/0000-0001-5454-0131</orcidid><orcidid>https://orcid.org/0000-0002-2955-7254</orcidid></search><sort><creationdate>20210608</creationdate><title>Evaluating the physical and biogeochemical state of the global ocean component of UKESM1 in CMIP6 historical simulations</title><author>Yool, Andrew ; Palmiéri, Julien ; Jones, Colin G ; de Mora, Lee ; Kuhlbrodt, Till ; Popova, Ekatarina E ; Nurser, A. J. George ; Hirschi, Joel ; Blaker, Adam T ; Coward, Andrew C ; Blockley, Edward W ; Sellar, Alistair A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-e6fc0707c00605e4c92f72b9d19b5c5be5bfbcbbae76aa2a33d4a0e31535eaf83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aerosols</topic><topic>Alkalinity</topic><topic>Analysis</topic><topic>Atmosphere</topic><topic>Atmospheric effects</topic><topic>Atmospheric greenhouse effect</topic><topic>Biogeochemistry</topic><topic>Carbon dioxide</topic><topic>Chemistry</topic><topic>Climate change</topic><topic>Climate change scenarios</topic><topic>Climate models</topic><topic>Climatic analysis</topic><topic>Dissolved inorganic carbon</topic><topic>Earth</topic><topic>Ecosystems</topic><topic>Equatorial regions</topic><topic>Future climates</topic><topic>General circulation models</topic><topic>Global warming</topic><topic>Greenhouse effect</topic><topic>Ocean circulation</topic><topic>Oceans</topic><topic>Organic matter</topic><topic>Performance evaluation</topic><topic>Physical states</topic><topic>Properties</topic><topic>Remineralization</topic><topic>Sea ice</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yool, Andrew</creatorcontrib><creatorcontrib>Palmiéri, Julien</creatorcontrib><creatorcontrib>Jones, Colin G</creatorcontrib><creatorcontrib>de Mora, Lee</creatorcontrib><creatorcontrib>Kuhlbrodt, Till</creatorcontrib><creatorcontrib>Popova, Ekatarina E</creatorcontrib><creatorcontrib>Nurser, A. J. George</creatorcontrib><creatorcontrib>Hirschi, Joel</creatorcontrib><creatorcontrib>Blaker, Adam T</creatorcontrib><creatorcontrib>Coward, Andrew C</creatorcontrib><creatorcontrib>Blockley, Edward W</creatorcontrib><creatorcontrib>Sellar, Alistair A</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Directory of Open Access Journals</collection><jtitle>Geoscientific Model Development</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yool, Andrew</au><au>Palmiéri, Julien</au><au>Jones, Colin G</au><au>de Mora, Lee</au><au>Kuhlbrodt, Till</au><au>Popova, Ekatarina E</au><au>Nurser, A. J. George</au><au>Hirschi, Joel</au><au>Blaker, Adam T</au><au>Coward, Andrew C</au><au>Blockley, Edward W</au><au>Sellar, Alistair A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluating the physical and biogeochemical state of the global ocean component of UKESM1 in CMIP6 historical simulations</atitle><jtitle>Geoscientific Model Development</jtitle><date>2021-06-08</date><risdate>2021</risdate><volume>14</volume><issue>6</issue><spage>3437</spage><epage>3472</epage><pages>3437-3472</pages><issn>1991-9603</issn><issn>1991-959X</issn><issn>1991-962X</issn><eissn>1991-9603</eissn><eissn>1991-962X</eissn><abstract>The ocean plays a key role in modulating the climate of the Earth system (ES). At the present time it is also a major sink both for the carbon dioxide (CO2) released by human activities and for the excess heat driven by the resulting atmospheric greenhouse effect. Understanding the ocean's role in these processes is critical for model projections of future change and its potential impacts on human societies. A necessary first step in assessing the credibility of such future projections is an evaluation of their performance against the present state of the ocean. Here we use a range of observational fields to validate the physical and biogeochemical performance of the ocean component of UKESM1, a new Earth system model (ESM) for CMIP6 built upon the HadGEM3-GC3.1 physical climate model. Analysis focuses on the realism of the ocean's physical state and circulation, its key elemental cycles, and its marine productivity. UKESM1 generally performs well across a broad spectrum of properties, but it exhibits a number of notable biases. Physically, these include a global warm bias inherited from model spin-up, excess northern sea ice but insufficient southern sea ice and sluggish interior circulation. Biogeochemical biases found include shallow remineralization of sinking organic matter, excessive iron stress in regions such as the equatorial Pacific, and generally lower surface alkalinity that results in decreased surface and interior dissolved inorganic carbon (DIC) concentrations. The mechanisms driving these biases are explored to identify consequences for the behaviour of UKESM1 under future climate change scenarios and avenues for model improvement. Finally, across key biogeochemical properties, UKESM1 improves in performance relative to its CMIP5 precursor and performs well alongside its fellow members of the CMIP6 ensemble.</abstract><cop>Katlenburg-Lindau</cop><pub>Copernicus GmbH</pub><doi>10.5194/gmd-14-3437-2021</doi><tpages>36</tpages><orcidid>https://orcid.org/0000-0002-0226-5243</orcidid><orcidid>https://orcid.org/0000-0002-5080-3149</orcidid><orcidid>https://orcid.org/0000-0001-8653-9258</orcidid><orcidid>https://orcid.org/0000-0002-9111-7700</orcidid><orcidid>https://orcid.org/0000-0002-9879-2776</orcidid><orcidid>https://orcid.org/0000-0003-2328-6729</orcidid><orcidid>https://orcid.org/0000-0002-0489-4238</orcidid><orcidid>https://orcid.org/0000-0002-7221-8127</orcidid><orcidid>https://orcid.org/0000-0003-1481-3697</orcidid><orcidid>https://orcid.org/0000-0001-5454-0131</orcidid><orcidid>https://orcid.org/0000-0002-2955-7254</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1991-9603 |
ispartof | Geoscientific Model Development, 2021-06, Vol.14 (6), p.3437-3472 |
issn | 1991-9603 1991-959X 1991-962X 1991-9603 1991-962X |
language | eng |
recordid | cdi_proquest_journals_2537951835 |
source | Publicly Available Content Database |
subjects | Aerosols Alkalinity Analysis Atmosphere Atmospheric effects Atmospheric greenhouse effect Biogeochemistry Carbon dioxide Chemistry Climate change Climate change scenarios Climate models Climatic analysis Dissolved inorganic carbon Earth Ecosystems Equatorial regions Future climates General circulation models Global warming Greenhouse effect Ocean circulation Oceans Organic matter Performance evaluation Physical states Properties Remineralization Sea ice Simulation |
title | Evaluating the physical and biogeochemical state of the global ocean component of UKESM1 in CMIP6 historical simulations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T14%3A03%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluating%20the%20physical%20and%20biogeochemical%20state%20of%20the%20global%20ocean%20component%20of%20UKESM1%20in%20CMIP6%20historical%20simulations&rft.jtitle=Geoscientific%20Model%20Development&rft.au=Yool,%20Andrew&rft.date=2021-06-08&rft.volume=14&rft.issue=6&rft.spage=3437&rft.epage=3472&rft.pages=3437-3472&rft.issn=1991-9603&rft.eissn=1991-9603&rft_id=info:doi/10.5194/gmd-14-3437-2021&rft_dat=%3Cgale_doaj_%3EA664519307%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c480t-e6fc0707c00605e4c92f72b9d19b5c5be5bfbcbbae76aa2a33d4a0e31535eaf83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2537951835&rft_id=info:pmid/&rft_galeid=A664519307&rfr_iscdi=true |