Loading…

Evaluating the physical and biogeochemical state of the global ocean component of UKESM1 in CMIP6 historical simulations

The ocean plays a key role in modulating the climate of the Earth system (ES). At the present time it is also a major sink both for the carbon dioxide (CO2) released by human activities and for the excess heat driven by the resulting atmospheric greenhouse effect. Understanding the ocean's role...

Full description

Saved in:
Bibliographic Details
Published in:Geoscientific Model Development 2021-06, Vol.14 (6), p.3437-3472
Main Authors: Yool, Andrew, Palmiéri, Julien, Jones, Colin G, de Mora, Lee, Kuhlbrodt, Till, Popova, Ekatarina E, Nurser, A. J. George, Hirschi, Joel, Blaker, Adam T, Coward, Andrew C, Blockley, Edward W, Sellar, Alistair A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c480t-e6fc0707c00605e4c92f72b9d19b5c5be5bfbcbbae76aa2a33d4a0e31535eaf83
cites cdi_FETCH-LOGICAL-c480t-e6fc0707c00605e4c92f72b9d19b5c5be5bfbcbbae76aa2a33d4a0e31535eaf83
container_end_page 3472
container_issue 6
container_start_page 3437
container_title Geoscientific Model Development
container_volume 14
creator Yool, Andrew
Palmiéri, Julien
Jones, Colin G
de Mora, Lee
Kuhlbrodt, Till
Popova, Ekatarina E
Nurser, A. J. George
Hirschi, Joel
Blaker, Adam T
Coward, Andrew C
Blockley, Edward W
Sellar, Alistair A
description The ocean plays a key role in modulating the climate of the Earth system (ES). At the present time it is also a major sink both for the carbon dioxide (CO2) released by human activities and for the excess heat driven by the resulting atmospheric greenhouse effect. Understanding the ocean's role in these processes is critical for model projections of future change and its potential impacts on human societies. A necessary first step in assessing the credibility of such future projections is an evaluation of their performance against the present state of the ocean. Here we use a range of observational fields to validate the physical and biogeochemical performance of the ocean component of UKESM1, a new Earth system model (ESM) for CMIP6 built upon the HadGEM3-GC3.1 physical climate model. Analysis focuses on the realism of the ocean's physical state and circulation, its key elemental cycles, and its marine productivity. UKESM1 generally performs well across a broad spectrum of properties, but it exhibits a number of notable biases. Physically, these include a global warm bias inherited from model spin-up, excess northern sea ice but insufficient southern sea ice and sluggish interior circulation. Biogeochemical biases found include shallow remineralization of sinking organic matter, excessive iron stress in regions such as the equatorial Pacific, and generally lower surface alkalinity that results in decreased surface and interior dissolved inorganic carbon (DIC) concentrations. The mechanisms driving these biases are explored to identify consequences for the behaviour of UKESM1 under future climate change scenarios and avenues for model improvement. Finally, across key biogeochemical properties, UKESM1 improves in performance relative to its CMIP5 precursor and performs well alongside its fellow members of the CMIP6 ensemble.
doi_str_mv 10.5194/gmd-14-3437-2021
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2537951835</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A664519307</galeid><doaj_id>oai_doaj_org_article_f32444b02fc6432facfff18bad2df8ec</doaj_id><sourcerecordid>A664519307</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-e6fc0707c00605e4c92f72b9d19b5c5be5bfbcbbae76aa2a33d4a0e31535eaf83</originalsourceid><addsrcrecordid>eNptkktv1DAUhSNEJUrpnmUkVixS_E6yrEYDjGgF6mNtXTt2xqMkHmynav89zgwCRkJe2Dr-fHx9fYriPUZXHLfsUz92FWYVZbSuCCL4VXGO2xZXrUD09T_rN8XbGHcIibYW9XnxvH6CYYbkpr5MW1Puty_RaRhKmLpSOd8br7dmPEgxQTKltwewH7zKmtcGplL7ce8nM6Vl9_Hb-v4Wl24qV7ebH6Lcuph8ODq4cR7yZX6K74ozC0M0l7_ni-Lx8_ph9bW6-f5ls7q-qTRrUKqMsBrVqNa5YsQN0y2xNVFth1vFNVeGK6u0UmBqAUCA0o4BMhRzyg3Yhl4Um6Nv52En98GNEF6kBycPgg-9hJCcHoy0lDDGFCJWC0aJBW2txY2CjnS2MTp7fTh67YP_OZuY5M7PYcrlS8Jp3XLcUP6X6iGbusn6FECPLmp5LQTLv0VRnamr_1B5dEu3czOty_rJgY8nBzKTzHPqYY5Rbu7vTll0ZHXwMQZj_zwcI7nERea4SMzkEhe5xIX-AhKfsq8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2537951835</pqid></control><display><type>article</type><title>Evaluating the physical and biogeochemical state of the global ocean component of UKESM1 in CMIP6 historical simulations</title><source>Publicly Available Content Database</source><creator>Yool, Andrew ; Palmiéri, Julien ; Jones, Colin G ; de Mora, Lee ; Kuhlbrodt, Till ; Popova, Ekatarina E ; Nurser, A. J. George ; Hirschi, Joel ; Blaker, Adam T ; Coward, Andrew C ; Blockley, Edward W ; Sellar, Alistair A</creator><creatorcontrib>Yool, Andrew ; Palmiéri, Julien ; Jones, Colin G ; de Mora, Lee ; Kuhlbrodt, Till ; Popova, Ekatarina E ; Nurser, A. J. George ; Hirschi, Joel ; Blaker, Adam T ; Coward, Andrew C ; Blockley, Edward W ; Sellar, Alistair A</creatorcontrib><description>The ocean plays a key role in modulating the climate of the Earth system (ES). At the present time it is also a major sink both for the carbon dioxide (CO2) released by human activities and for the excess heat driven by the resulting atmospheric greenhouse effect. Understanding the ocean's role in these processes is critical for model projections of future change and its potential impacts on human societies. A necessary first step in assessing the credibility of such future projections is an evaluation of their performance against the present state of the ocean. Here we use a range of observational fields to validate the physical and biogeochemical performance of the ocean component of UKESM1, a new Earth system model (ESM) for CMIP6 built upon the HadGEM3-GC3.1 physical climate model. Analysis focuses on the realism of the ocean's physical state and circulation, its key elemental cycles, and its marine productivity. UKESM1 generally performs well across a broad spectrum of properties, but it exhibits a number of notable biases. Physically, these include a global warm bias inherited from model spin-up, excess northern sea ice but insufficient southern sea ice and sluggish interior circulation. Biogeochemical biases found include shallow remineralization of sinking organic matter, excessive iron stress in regions such as the equatorial Pacific, and generally lower surface alkalinity that results in decreased surface and interior dissolved inorganic carbon (DIC) concentrations. The mechanisms driving these biases are explored to identify consequences for the behaviour of UKESM1 under future climate change scenarios and avenues for model improvement. Finally, across key biogeochemical properties, UKESM1 improves in performance relative to its CMIP5 precursor and performs well alongside its fellow members of the CMIP6 ensemble.</description><identifier>ISSN: 1991-9603</identifier><identifier>ISSN: 1991-959X</identifier><identifier>ISSN: 1991-962X</identifier><identifier>EISSN: 1991-9603</identifier><identifier>EISSN: 1991-962X</identifier><identifier>DOI: 10.5194/gmd-14-3437-2021</identifier><language>eng</language><publisher>Katlenburg-Lindau: Copernicus GmbH</publisher><subject>Aerosols ; Alkalinity ; Analysis ; Atmosphere ; Atmospheric effects ; Atmospheric greenhouse effect ; Biogeochemistry ; Carbon dioxide ; Chemistry ; Climate change ; Climate change scenarios ; Climate models ; Climatic analysis ; Dissolved inorganic carbon ; Earth ; Ecosystems ; Equatorial regions ; Future climates ; General circulation models ; Global warming ; Greenhouse effect ; Ocean circulation ; Oceans ; Organic matter ; Performance evaluation ; Physical states ; Properties ; Remineralization ; Sea ice ; Simulation</subject><ispartof>Geoscientific Model Development, 2021-06, Vol.14 (6), p.3437-3472</ispartof><rights>COPYRIGHT 2021 Copernicus GmbH</rights><rights>2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-e6fc0707c00605e4c92f72b9d19b5c5be5bfbcbbae76aa2a33d4a0e31535eaf83</citedby><cites>FETCH-LOGICAL-c480t-e6fc0707c00605e4c92f72b9d19b5c5be5bfbcbbae76aa2a33d4a0e31535eaf83</cites><orcidid>0000-0002-0226-5243 ; 0000-0002-5080-3149 ; 0000-0001-8653-9258 ; 0000-0002-9111-7700 ; 0000-0002-9879-2776 ; 0000-0003-2328-6729 ; 0000-0002-0489-4238 ; 0000-0002-7221-8127 ; 0000-0003-1481-3697 ; 0000-0001-5454-0131 ; 0000-0002-2955-7254</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2537951835/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2537951835?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25733,27903,27904,36991,44569,74872</link.rule.ids></links><search><creatorcontrib>Yool, Andrew</creatorcontrib><creatorcontrib>Palmiéri, Julien</creatorcontrib><creatorcontrib>Jones, Colin G</creatorcontrib><creatorcontrib>de Mora, Lee</creatorcontrib><creatorcontrib>Kuhlbrodt, Till</creatorcontrib><creatorcontrib>Popova, Ekatarina E</creatorcontrib><creatorcontrib>Nurser, A. J. George</creatorcontrib><creatorcontrib>Hirschi, Joel</creatorcontrib><creatorcontrib>Blaker, Adam T</creatorcontrib><creatorcontrib>Coward, Andrew C</creatorcontrib><creatorcontrib>Blockley, Edward W</creatorcontrib><creatorcontrib>Sellar, Alistair A</creatorcontrib><title>Evaluating the physical and biogeochemical state of the global ocean component of UKESM1 in CMIP6 historical simulations</title><title>Geoscientific Model Development</title><description>The ocean plays a key role in modulating the climate of the Earth system (ES). At the present time it is also a major sink both for the carbon dioxide (CO2) released by human activities and for the excess heat driven by the resulting atmospheric greenhouse effect. Understanding the ocean's role in these processes is critical for model projections of future change and its potential impacts on human societies. A necessary first step in assessing the credibility of such future projections is an evaluation of their performance against the present state of the ocean. Here we use a range of observational fields to validate the physical and biogeochemical performance of the ocean component of UKESM1, a new Earth system model (ESM) for CMIP6 built upon the HadGEM3-GC3.1 physical climate model. Analysis focuses on the realism of the ocean's physical state and circulation, its key elemental cycles, and its marine productivity. UKESM1 generally performs well across a broad spectrum of properties, but it exhibits a number of notable biases. Physically, these include a global warm bias inherited from model spin-up, excess northern sea ice but insufficient southern sea ice and sluggish interior circulation. Biogeochemical biases found include shallow remineralization of sinking organic matter, excessive iron stress in regions such as the equatorial Pacific, and generally lower surface alkalinity that results in decreased surface and interior dissolved inorganic carbon (DIC) concentrations. The mechanisms driving these biases are explored to identify consequences for the behaviour of UKESM1 under future climate change scenarios and avenues for model improvement. Finally, across key biogeochemical properties, UKESM1 improves in performance relative to its CMIP5 precursor and performs well alongside its fellow members of the CMIP6 ensemble.</description><subject>Aerosols</subject><subject>Alkalinity</subject><subject>Analysis</subject><subject>Atmosphere</subject><subject>Atmospheric effects</subject><subject>Atmospheric greenhouse effect</subject><subject>Biogeochemistry</subject><subject>Carbon dioxide</subject><subject>Chemistry</subject><subject>Climate change</subject><subject>Climate change scenarios</subject><subject>Climate models</subject><subject>Climatic analysis</subject><subject>Dissolved inorganic carbon</subject><subject>Earth</subject><subject>Ecosystems</subject><subject>Equatorial regions</subject><subject>Future climates</subject><subject>General circulation models</subject><subject>Global warming</subject><subject>Greenhouse effect</subject><subject>Ocean circulation</subject><subject>Oceans</subject><subject>Organic matter</subject><subject>Performance evaluation</subject><subject>Physical states</subject><subject>Properties</subject><subject>Remineralization</subject><subject>Sea ice</subject><subject>Simulation</subject><issn>1991-9603</issn><issn>1991-959X</issn><issn>1991-962X</issn><issn>1991-9603</issn><issn>1991-962X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkktv1DAUhSNEJUrpnmUkVixS_E6yrEYDjGgF6mNtXTt2xqMkHmynav89zgwCRkJe2Dr-fHx9fYriPUZXHLfsUz92FWYVZbSuCCL4VXGO2xZXrUD09T_rN8XbGHcIibYW9XnxvH6CYYbkpr5MW1Puty_RaRhKmLpSOd8br7dmPEgxQTKltwewH7zKmtcGplL7ce8nM6Vl9_Hb-v4Wl24qV7ebH6Lcuph8ODq4cR7yZX6K74ozC0M0l7_ni-Lx8_ph9bW6-f5ls7q-qTRrUKqMsBrVqNa5YsQN0y2xNVFth1vFNVeGK6u0UmBqAUCA0o4BMhRzyg3Yhl4Um6Nv52En98GNEF6kBycPgg-9hJCcHoy0lDDGFCJWC0aJBW2txY2CjnS2MTp7fTh67YP_OZuY5M7PYcrlS8Jp3XLcUP6X6iGbusn6FECPLmp5LQTLv0VRnamr_1B5dEu3czOty_rJgY8nBzKTzHPqYY5Rbu7vTll0ZHXwMQZj_zwcI7nERea4SMzkEhe5xIX-AhKfsq8</recordid><startdate>20210608</startdate><enddate>20210608</enddate><creator>Yool, Andrew</creator><creator>Palmiéri, Julien</creator><creator>Jones, Colin G</creator><creator>de Mora, Lee</creator><creator>Kuhlbrodt, Till</creator><creator>Popova, Ekatarina E</creator><creator>Nurser, A. J. George</creator><creator>Hirschi, Joel</creator><creator>Blaker, Adam T</creator><creator>Coward, Andrew C</creator><creator>Blockley, Edward W</creator><creator>Sellar, Alistair A</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0226-5243</orcidid><orcidid>https://orcid.org/0000-0002-5080-3149</orcidid><orcidid>https://orcid.org/0000-0001-8653-9258</orcidid><orcidid>https://orcid.org/0000-0002-9111-7700</orcidid><orcidid>https://orcid.org/0000-0002-9879-2776</orcidid><orcidid>https://orcid.org/0000-0003-2328-6729</orcidid><orcidid>https://orcid.org/0000-0002-0489-4238</orcidid><orcidid>https://orcid.org/0000-0002-7221-8127</orcidid><orcidid>https://orcid.org/0000-0003-1481-3697</orcidid><orcidid>https://orcid.org/0000-0001-5454-0131</orcidid><orcidid>https://orcid.org/0000-0002-2955-7254</orcidid></search><sort><creationdate>20210608</creationdate><title>Evaluating the physical and biogeochemical state of the global ocean component of UKESM1 in CMIP6 historical simulations</title><author>Yool, Andrew ; Palmiéri, Julien ; Jones, Colin G ; de Mora, Lee ; Kuhlbrodt, Till ; Popova, Ekatarina E ; Nurser, A. J. George ; Hirschi, Joel ; Blaker, Adam T ; Coward, Andrew C ; Blockley, Edward W ; Sellar, Alistair A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-e6fc0707c00605e4c92f72b9d19b5c5be5bfbcbbae76aa2a33d4a0e31535eaf83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aerosols</topic><topic>Alkalinity</topic><topic>Analysis</topic><topic>Atmosphere</topic><topic>Atmospheric effects</topic><topic>Atmospheric greenhouse effect</topic><topic>Biogeochemistry</topic><topic>Carbon dioxide</topic><topic>Chemistry</topic><topic>Climate change</topic><topic>Climate change scenarios</topic><topic>Climate models</topic><topic>Climatic analysis</topic><topic>Dissolved inorganic carbon</topic><topic>Earth</topic><topic>Ecosystems</topic><topic>Equatorial regions</topic><topic>Future climates</topic><topic>General circulation models</topic><topic>Global warming</topic><topic>Greenhouse effect</topic><topic>Ocean circulation</topic><topic>Oceans</topic><topic>Organic matter</topic><topic>Performance evaluation</topic><topic>Physical states</topic><topic>Properties</topic><topic>Remineralization</topic><topic>Sea ice</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yool, Andrew</creatorcontrib><creatorcontrib>Palmiéri, Julien</creatorcontrib><creatorcontrib>Jones, Colin G</creatorcontrib><creatorcontrib>de Mora, Lee</creatorcontrib><creatorcontrib>Kuhlbrodt, Till</creatorcontrib><creatorcontrib>Popova, Ekatarina E</creatorcontrib><creatorcontrib>Nurser, A. J. George</creatorcontrib><creatorcontrib>Hirschi, Joel</creatorcontrib><creatorcontrib>Blaker, Adam T</creatorcontrib><creatorcontrib>Coward, Andrew C</creatorcontrib><creatorcontrib>Blockley, Edward W</creatorcontrib><creatorcontrib>Sellar, Alistair A</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Directory of Open Access Journals</collection><jtitle>Geoscientific Model Development</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yool, Andrew</au><au>Palmiéri, Julien</au><au>Jones, Colin G</au><au>de Mora, Lee</au><au>Kuhlbrodt, Till</au><au>Popova, Ekatarina E</au><au>Nurser, A. J. George</au><au>Hirschi, Joel</au><au>Blaker, Adam T</au><au>Coward, Andrew C</au><au>Blockley, Edward W</au><au>Sellar, Alistair A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluating the physical and biogeochemical state of the global ocean component of UKESM1 in CMIP6 historical simulations</atitle><jtitle>Geoscientific Model Development</jtitle><date>2021-06-08</date><risdate>2021</risdate><volume>14</volume><issue>6</issue><spage>3437</spage><epage>3472</epage><pages>3437-3472</pages><issn>1991-9603</issn><issn>1991-959X</issn><issn>1991-962X</issn><eissn>1991-9603</eissn><eissn>1991-962X</eissn><abstract>The ocean plays a key role in modulating the climate of the Earth system (ES). At the present time it is also a major sink both for the carbon dioxide (CO2) released by human activities and for the excess heat driven by the resulting atmospheric greenhouse effect. Understanding the ocean's role in these processes is critical for model projections of future change and its potential impacts on human societies. A necessary first step in assessing the credibility of such future projections is an evaluation of their performance against the present state of the ocean. Here we use a range of observational fields to validate the physical and biogeochemical performance of the ocean component of UKESM1, a new Earth system model (ESM) for CMIP6 built upon the HadGEM3-GC3.1 physical climate model. Analysis focuses on the realism of the ocean's physical state and circulation, its key elemental cycles, and its marine productivity. UKESM1 generally performs well across a broad spectrum of properties, but it exhibits a number of notable biases. Physically, these include a global warm bias inherited from model spin-up, excess northern sea ice but insufficient southern sea ice and sluggish interior circulation. Biogeochemical biases found include shallow remineralization of sinking organic matter, excessive iron stress in regions such as the equatorial Pacific, and generally lower surface alkalinity that results in decreased surface and interior dissolved inorganic carbon (DIC) concentrations. The mechanisms driving these biases are explored to identify consequences for the behaviour of UKESM1 under future climate change scenarios and avenues for model improvement. Finally, across key biogeochemical properties, UKESM1 improves in performance relative to its CMIP5 precursor and performs well alongside its fellow members of the CMIP6 ensemble.</abstract><cop>Katlenburg-Lindau</cop><pub>Copernicus GmbH</pub><doi>10.5194/gmd-14-3437-2021</doi><tpages>36</tpages><orcidid>https://orcid.org/0000-0002-0226-5243</orcidid><orcidid>https://orcid.org/0000-0002-5080-3149</orcidid><orcidid>https://orcid.org/0000-0001-8653-9258</orcidid><orcidid>https://orcid.org/0000-0002-9111-7700</orcidid><orcidid>https://orcid.org/0000-0002-9879-2776</orcidid><orcidid>https://orcid.org/0000-0003-2328-6729</orcidid><orcidid>https://orcid.org/0000-0002-0489-4238</orcidid><orcidid>https://orcid.org/0000-0002-7221-8127</orcidid><orcidid>https://orcid.org/0000-0003-1481-3697</orcidid><orcidid>https://orcid.org/0000-0001-5454-0131</orcidid><orcidid>https://orcid.org/0000-0002-2955-7254</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1991-9603
ispartof Geoscientific Model Development, 2021-06, Vol.14 (6), p.3437-3472
issn 1991-9603
1991-959X
1991-962X
1991-9603
1991-962X
language eng
recordid cdi_proquest_journals_2537951835
source Publicly Available Content Database
subjects Aerosols
Alkalinity
Analysis
Atmosphere
Atmospheric effects
Atmospheric greenhouse effect
Biogeochemistry
Carbon dioxide
Chemistry
Climate change
Climate change scenarios
Climate models
Climatic analysis
Dissolved inorganic carbon
Earth
Ecosystems
Equatorial regions
Future climates
General circulation models
Global warming
Greenhouse effect
Ocean circulation
Oceans
Organic matter
Performance evaluation
Physical states
Properties
Remineralization
Sea ice
Simulation
title Evaluating the physical and biogeochemical state of the global ocean component of UKESM1 in CMIP6 historical simulations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T14%3A03%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluating%20the%20physical%20and%20biogeochemical%20state%20of%20the%20global%20ocean%20component%20of%20UKESM1%20in%20CMIP6%20historical%20simulations&rft.jtitle=Geoscientific%20Model%20Development&rft.au=Yool,%20Andrew&rft.date=2021-06-08&rft.volume=14&rft.issue=6&rft.spage=3437&rft.epage=3472&rft.pages=3437-3472&rft.issn=1991-9603&rft.eissn=1991-9603&rft_id=info:doi/10.5194/gmd-14-3437-2021&rft_dat=%3Cgale_doaj_%3EA664519307%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c480t-e6fc0707c00605e4c92f72b9d19b5c5be5bfbcbbae76aa2a33d4a0e31535eaf83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2537951835&rft_id=info:pmid/&rft_galeid=A664519307&rfr_iscdi=true