Loading…
Synthesis and characterization of Sn-doped TiO2 film for antibacterial applications
Simple sol–gel method has been exploited to deposit Sn-doped TiO 2 thin films on glass substrates. The resultant coatings were characterized by X-ray diffraction (XRD), UV–visible techniques (UV–Vis), Fourier transform infrared spectroscopy (FTIR), and photoluminescence analysis (PL). The XRD patter...
Saved in:
Published in: | Applied physics. A, Materials science & processing Materials science & processing, 2021-07, Vol.127 (7), Article 498 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c363t-32dffe19e55992b1ab6a526fb0ba337574e2228f2e38f1028174c68606f365813 |
---|---|
cites | cdi_FETCH-LOGICAL-c363t-32dffe19e55992b1ab6a526fb0ba337574e2228f2e38f1028174c68606f365813 |
container_end_page | |
container_issue | 7 |
container_start_page | |
container_title | Applied physics. A, Materials science & processing |
container_volume | 127 |
creator | Rajeswari, R. Venugopal, D. George, Amal Raj, A. Dhayal Sundaram, S. John Bashir, A. K. H. Maaza, M. Kaviyarasu, K. |
description | Simple sol–gel method has been exploited to deposit Sn-doped TiO
2
thin films on glass substrates. The resultant coatings were characterized by X-ray diffraction (XRD), UV–visible techniques (UV–Vis), Fourier transform infrared spectroscopy (FTIR), and photoluminescence analysis (PL). The XRD pattern reveals an increase in crystallite size of the prepared samples with the increasing doping concentration. A decrease in doping concentrating resulted in the decrease in bandgap values. The different chemical bonds on these films were identified from their FTIR spectra. The photoluminescence analysis shows an increase in the emission peak intensity with increasing dopant concentration, and this can be attributed to the effect created due to surface states. The prepared samples were tested as antibacterial agent toward both Gram-positive and Gram-negative bacteria like S.
aureus
(Staphylococcus aureus) and E.
coli
(Escherichia coli), respectively. The size of the inhibition zones indicates that the sample shows maximum inhibitory property toward E.
coli
when compared to S.
aureus
. |
doi_str_mv | 10.1007/s00339-021-04656-w |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2538316412</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2538316412</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-32dffe19e55992b1ab6a526fb0ba337574e2228f2e38f1028174c68606f365813</originalsourceid><addsrcrecordid>eNp9kD1PwzAQQC0EEqXwB5gsMRvOd4mTjKjiS6rUoWW2nMSmrtok2Kmq8usJDRIbt9zy3p30GLuVcC8BsocIQFQIQCkgUakShzM2kQmhAEVwziZQJJnIqVCX7CrGDQyTIE7Ycnls-rWNPnLT1Lxam2Cq3gb_ZXrfNrx1fNmIuu1szVd-gdz57Y67Ngx478uRNVtuum7rq5MTr9mFM9tob373lL0_P61mr2K-eHmbPc5FRYp6QVg7Z2Vh07QosJSmVCZF5UooDVGWZolFxNyhpdxJwFxmSaVyBcqRSnNJU3Y33u1C-7m3sdebdh-a4aXGlHKSKpE4UDhSVWhjDNbpLvidCUctQf_E02M8PcTTp3j6MEg0SnGAmw8b_k7_Y30Dfapx2A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2538316412</pqid></control><display><type>article</type><title>Synthesis and characterization of Sn-doped TiO2 film for antibacterial applications</title><source>Springer Nature</source><creator>Rajeswari, R. ; Venugopal, D. ; George, Amal ; Raj, A. Dhayal ; Sundaram, S. John ; Bashir, A. K. H. ; Maaza, M. ; Kaviyarasu, K.</creator><creatorcontrib>Rajeswari, R. ; Venugopal, D. ; George, Amal ; Raj, A. Dhayal ; Sundaram, S. John ; Bashir, A. K. H. ; Maaza, M. ; Kaviyarasu, K.</creatorcontrib><description>Simple sol–gel method has been exploited to deposit Sn-doped TiO
2
thin films on glass substrates. The resultant coatings were characterized by X-ray diffraction (XRD), UV–visible techniques (UV–Vis), Fourier transform infrared spectroscopy (FTIR), and photoluminescence analysis (PL). The XRD pattern reveals an increase in crystallite size of the prepared samples with the increasing doping concentration. A decrease in doping concentrating resulted in the decrease in bandgap values. The different chemical bonds on these films were identified from their FTIR spectra. The photoluminescence analysis shows an increase in the emission peak intensity with increasing dopant concentration, and this can be attributed to the effect created due to surface states. The prepared samples were tested as antibacterial agent toward both Gram-positive and Gram-negative bacteria like S.
aureus
(Staphylococcus aureus) and E.
coli
(Escherichia coli), respectively. The size of the inhibition zones indicates that the sample shows maximum inhibitory property toward E.
coli
when compared to S.
aureus
.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-021-04656-w</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Antiinfectives and antibacterials ; Applied physics ; Characterization and Evaluation of Materials ; Chemical bonds ; Condensed Matter Physics ; Crystallites ; Doping ; E coli ; Emission analysis ; Fourier transforms ; Glass substrates ; Infrared analysis ; Infrared spectroscopy ; Machines ; Manufacturing ; Materials science ; Nanotechnology ; Optical and Electronic Materials ; Photoluminescence ; Physics ; Physics and Astronomy ; Processes ; Sol-gel processes ; Spectrum analysis ; Surfaces and Interfaces ; Thin Films ; Tin ; Titanium dioxide ; X-ray diffraction</subject><ispartof>Applied physics. A, Materials science & processing, 2021-07, Vol.127 (7), Article 498</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-32dffe19e55992b1ab6a526fb0ba337574e2228f2e38f1028174c68606f365813</citedby><cites>FETCH-LOGICAL-c363t-32dffe19e55992b1ab6a526fb0ba337574e2228f2e38f1028174c68606f365813</cites><orcidid>0000-0002-8171-8297</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Rajeswari, R.</creatorcontrib><creatorcontrib>Venugopal, D.</creatorcontrib><creatorcontrib>George, Amal</creatorcontrib><creatorcontrib>Raj, A. Dhayal</creatorcontrib><creatorcontrib>Sundaram, S. John</creatorcontrib><creatorcontrib>Bashir, A. K. H.</creatorcontrib><creatorcontrib>Maaza, M.</creatorcontrib><creatorcontrib>Kaviyarasu, K.</creatorcontrib><title>Synthesis and characterization of Sn-doped TiO2 film for antibacterial applications</title><title>Applied physics. A, Materials science & processing</title><addtitle>Appl. Phys. A</addtitle><description>Simple sol–gel method has been exploited to deposit Sn-doped TiO
2
thin films on glass substrates. The resultant coatings were characterized by X-ray diffraction (XRD), UV–visible techniques (UV–Vis), Fourier transform infrared spectroscopy (FTIR), and photoluminescence analysis (PL). The XRD pattern reveals an increase in crystallite size of the prepared samples with the increasing doping concentration. A decrease in doping concentrating resulted in the decrease in bandgap values. The different chemical bonds on these films were identified from their FTIR spectra. The photoluminescence analysis shows an increase in the emission peak intensity with increasing dopant concentration, and this can be attributed to the effect created due to surface states. The prepared samples were tested as antibacterial agent toward both Gram-positive and Gram-negative bacteria like S.
aureus
(Staphylococcus aureus) and E.
coli
(Escherichia coli), respectively. The size of the inhibition zones indicates that the sample shows maximum inhibitory property toward E.
coli
when compared to S.
aureus
.</description><subject>Antiinfectives and antibacterials</subject><subject>Applied physics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical bonds</subject><subject>Condensed Matter Physics</subject><subject>Crystallites</subject><subject>Doping</subject><subject>E coli</subject><subject>Emission analysis</subject><subject>Fourier transforms</subject><subject>Glass substrates</subject><subject>Infrared analysis</subject><subject>Infrared spectroscopy</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Materials science</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Photoluminescence</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Processes</subject><subject>Sol-gel processes</subject><subject>Spectrum analysis</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Tin</subject><subject>Titanium dioxide</subject><subject>X-ray diffraction</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQQC0EEqXwB5gsMRvOd4mTjKjiS6rUoWW2nMSmrtok2Kmq8usJDRIbt9zy3p30GLuVcC8BsocIQFQIQCkgUakShzM2kQmhAEVwziZQJJnIqVCX7CrGDQyTIE7Ycnls-rWNPnLT1Lxam2Cq3gb_ZXrfNrx1fNmIuu1szVd-gdz57Y67Ngx478uRNVtuum7rq5MTr9mFM9tob373lL0_P61mr2K-eHmbPc5FRYp6QVg7Z2Vh07QosJSmVCZF5UooDVGWZolFxNyhpdxJwFxmSaVyBcqRSnNJU3Y33u1C-7m3sdebdh-a4aXGlHKSKpE4UDhSVWhjDNbpLvidCUctQf_E02M8PcTTp3j6MEg0SnGAmw8b_k7_Y30Dfapx2A</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Rajeswari, R.</creator><creator>Venugopal, D.</creator><creator>George, Amal</creator><creator>Raj, A. Dhayal</creator><creator>Sundaram, S. John</creator><creator>Bashir, A. K. H.</creator><creator>Maaza, M.</creator><creator>Kaviyarasu, K.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8171-8297</orcidid></search><sort><creationdate>20210701</creationdate><title>Synthesis and characterization of Sn-doped TiO2 film for antibacterial applications</title><author>Rajeswari, R. ; Venugopal, D. ; George, Amal ; Raj, A. Dhayal ; Sundaram, S. John ; Bashir, A. K. H. ; Maaza, M. ; Kaviyarasu, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-32dffe19e55992b1ab6a526fb0ba337574e2228f2e38f1028174c68606f365813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Antiinfectives and antibacterials</topic><topic>Applied physics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical bonds</topic><topic>Condensed Matter Physics</topic><topic>Crystallites</topic><topic>Doping</topic><topic>E coli</topic><topic>Emission analysis</topic><topic>Fourier transforms</topic><topic>Glass substrates</topic><topic>Infrared analysis</topic><topic>Infrared spectroscopy</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Materials science</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Photoluminescence</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Processes</topic><topic>Sol-gel processes</topic><topic>Spectrum analysis</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Tin</topic><topic>Titanium dioxide</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rajeswari, R.</creatorcontrib><creatorcontrib>Venugopal, D.</creatorcontrib><creatorcontrib>George, Amal</creatorcontrib><creatorcontrib>Raj, A. Dhayal</creatorcontrib><creatorcontrib>Sundaram, S. John</creatorcontrib><creatorcontrib>Bashir, A. K. H.</creatorcontrib><creatorcontrib>Maaza, M.</creatorcontrib><creatorcontrib>Kaviyarasu, K.</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics. A, Materials science & processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rajeswari, R.</au><au>Venugopal, D.</au><au>George, Amal</au><au>Raj, A. Dhayal</au><au>Sundaram, S. John</au><au>Bashir, A. K. H.</au><au>Maaza, M.</au><au>Kaviyarasu, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis and characterization of Sn-doped TiO2 film for antibacterial applications</atitle><jtitle>Applied physics. A, Materials science & processing</jtitle><stitle>Appl. Phys. A</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>127</volume><issue>7</issue><artnum>498</artnum><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>Simple sol–gel method has been exploited to deposit Sn-doped TiO
2
thin films on glass substrates. The resultant coatings were characterized by X-ray diffraction (XRD), UV–visible techniques (UV–Vis), Fourier transform infrared spectroscopy (FTIR), and photoluminescence analysis (PL). The XRD pattern reveals an increase in crystallite size of the prepared samples with the increasing doping concentration. A decrease in doping concentrating resulted in the decrease in bandgap values. The different chemical bonds on these films were identified from their FTIR spectra. The photoluminescence analysis shows an increase in the emission peak intensity with increasing dopant concentration, and this can be attributed to the effect created due to surface states. The prepared samples were tested as antibacterial agent toward both Gram-positive and Gram-negative bacteria like S.
aureus
(Staphylococcus aureus) and E.
coli
(Escherichia coli), respectively. The size of the inhibition zones indicates that the sample shows maximum inhibitory property toward E.
coli
when compared to S.
aureus
.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00339-021-04656-w</doi><orcidid>https://orcid.org/0000-0002-8171-8297</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-8396 |
ispartof | Applied physics. A, Materials science & processing, 2021-07, Vol.127 (7), Article 498 |
issn | 0947-8396 1432-0630 |
language | eng |
recordid | cdi_proquest_journals_2538316412 |
source | Springer Nature |
subjects | Antiinfectives and antibacterials Applied physics Characterization and Evaluation of Materials Chemical bonds Condensed Matter Physics Crystallites Doping E coli Emission analysis Fourier transforms Glass substrates Infrared analysis Infrared spectroscopy Machines Manufacturing Materials science Nanotechnology Optical and Electronic Materials Photoluminescence Physics Physics and Astronomy Processes Sol-gel processes Spectrum analysis Surfaces and Interfaces Thin Films Tin Titanium dioxide X-ray diffraction |
title | Synthesis and characterization of Sn-doped TiO2 film for antibacterial applications |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T18%3A49%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20and%20characterization%20of%20Sn-doped%20TiO2%20film%20for%20antibacterial%20applications&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Rajeswari,%20R.&rft.date=2021-07-01&rft.volume=127&rft.issue=7&rft.artnum=498&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-021-04656-w&rft_dat=%3Cproquest_cross%3E2538316412%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-32dffe19e55992b1ab6a526fb0ba337574e2228f2e38f1028174c68606f365813%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2538316412&rft_id=info:pmid/&rfr_iscdi=true |