Loading…

Conservation laws in coupled cluster dynamics at finite-temperature

We extend the finite-temperature Keldysh non-equilibrium coupled cluster theory (Keldysh-CC) [{\it J. Chem. Theory Comput.} \textbf{2019}, 15, 6137-6253] to include a time-dependent orbital basis. When chosen to minimize the action, such a basis restores local and global conservation laws (Ehrenfest...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2021-06
Main Authors: Ruojing Peng, White, Alec F, Zhai, Huanchen, Chan, Garnet Kin-Lic
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Ruojing Peng
White, Alec F
Zhai, Huanchen
Chan, Garnet Kin-Lic
description We extend the finite-temperature Keldysh non-equilibrium coupled cluster theory (Keldysh-CC) [{\it J. Chem. Theory Comput.} \textbf{2019}, 15, 6137-6253] to include a time-dependent orbital basis. When chosen to minimize the action, such a basis restores local and global conservation laws (Ehrenfest's theorem) for all one-particle properties, while remaining energy conserving for time-independent Hamiltonians. We present the time-dependent orbital-optimized coupled cluster doubles method (Keldysh-OCCD) in analogy with the formalism for zero-temperature dynamics, extended to finite temperatures through the time-dependent action on the Keldysh contour. To demonstrate the conservation property and understand the numerical performance of the method, we apply it to several problems of non-equilibrium finite-temperature dynamics: a 1D Hubbard model with a time-dependent Peierls phase, laser driving of molecular H\(_2\), driven dynamics in warm-dense silicon, and transport in the single impurity Anderson model.
doi_str_mv 10.48550/arxiv.2106.02691
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2538897482</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2538897482</sourcerecordid><originalsourceid>FETCH-LOGICAL-a522-b04dc465ef7073b3d82b5cb64994fdbef6b4b9d9eeb406134d1e639fd3ad60463</originalsourceid><addsrcrecordid>eNotjTtrwzAYAEWg0JDmB3QTZLart6WxmL4gkCV7kKxPoODIriSn7b9voJ1uOLhD6JGSVmgpyZPN3_HaMkpUS5gydIXWjHPaaMHYPdqWcibkJjomJV-jvp9SgXy1NU4Jj_ar4JjwMC3zCB4P41IqZOx_kr3EoWBbcYgpVmgqXGbIti4ZHtBdsGOB7T836Pj6cuzfm_3h7aN_3jdWMtY4IvwglITQkY477jVzcnBKGCOCdxCUE854A-AEUZQLT0FxEzy3XhGh-Abt_rJznj4XKPV0npacbscTk1xr0wnN-C8YXU0b</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2538897482</pqid></control><display><type>article</type><title>Conservation laws in coupled cluster dynamics at finite-temperature</title><source>Publicly Available Content Database</source><creator>Ruojing Peng ; White, Alec F ; Zhai, Huanchen ; Chan, Garnet Kin-Lic</creator><creatorcontrib>Ruojing Peng ; White, Alec F ; Zhai, Huanchen ; Chan, Garnet Kin-Lic</creatorcontrib><description>We extend the finite-temperature Keldysh non-equilibrium coupled cluster theory (Keldysh-CC) [{\it J. Chem. Theory Comput.} \textbf{2019}, 15, 6137-6253] to include a time-dependent orbital basis. When chosen to minimize the action, such a basis restores local and global conservation laws (Ehrenfest's theorem) for all one-particle properties, while remaining energy conserving for time-independent Hamiltonians. We present the time-dependent orbital-optimized coupled cluster doubles method (Keldysh-OCCD) in analogy with the formalism for zero-temperature dynamics, extended to finite temperatures through the time-dependent action on the Keldysh contour. To demonstrate the conservation property and understand the numerical performance of the method, we apply it to several problems of non-equilibrium finite-temperature dynamics: a 1D Hubbard model with a time-dependent Peierls phase, laser driving of molecular H\(_2\), driven dynamics in warm-dense silicon, and transport in the single impurity Anderson model.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2106.02691</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Clusters ; Conservation laws ; Dynamics ; Time dependence</subject><ispartof>arXiv.org, 2021-06</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2538897482?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,27902,36989,44566</link.rule.ids></links><search><creatorcontrib>Ruojing Peng</creatorcontrib><creatorcontrib>White, Alec F</creatorcontrib><creatorcontrib>Zhai, Huanchen</creatorcontrib><creatorcontrib>Chan, Garnet Kin-Lic</creatorcontrib><title>Conservation laws in coupled cluster dynamics at finite-temperature</title><title>arXiv.org</title><description>We extend the finite-temperature Keldysh non-equilibrium coupled cluster theory (Keldysh-CC) [{\it J. Chem. Theory Comput.} \textbf{2019}, 15, 6137-6253] to include a time-dependent orbital basis. When chosen to minimize the action, such a basis restores local and global conservation laws (Ehrenfest's theorem) for all one-particle properties, while remaining energy conserving for time-independent Hamiltonians. We present the time-dependent orbital-optimized coupled cluster doubles method (Keldysh-OCCD) in analogy with the formalism for zero-temperature dynamics, extended to finite temperatures through the time-dependent action on the Keldysh contour. To demonstrate the conservation property and understand the numerical performance of the method, we apply it to several problems of non-equilibrium finite-temperature dynamics: a 1D Hubbard model with a time-dependent Peierls phase, laser driving of molecular H\(_2\), driven dynamics in warm-dense silicon, and transport in the single impurity Anderson model.</description><subject>Clusters</subject><subject>Conservation laws</subject><subject>Dynamics</subject><subject>Time dependence</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjTtrwzAYAEWg0JDmB3QTZLart6WxmL4gkCV7kKxPoODIriSn7b9voJ1uOLhD6JGSVmgpyZPN3_HaMkpUS5gydIXWjHPaaMHYPdqWcibkJjomJV-jvp9SgXy1NU4Jj_ar4JjwMC3zCB4P41IqZOx_kr3EoWBbcYgpVmgqXGbIti4ZHtBdsGOB7T836Pj6cuzfm_3h7aN_3jdWMtY4IvwglITQkY477jVzcnBKGCOCdxCUE854A-AEUZQLT0FxEzy3XhGh-Abt_rJznj4XKPV0npacbscTk1xr0wnN-C8YXU0b</recordid><startdate>20210604</startdate><enddate>20210604</enddate><creator>Ruojing Peng</creator><creator>White, Alec F</creator><creator>Zhai, Huanchen</creator><creator>Chan, Garnet Kin-Lic</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210604</creationdate><title>Conservation laws in coupled cluster dynamics at finite-temperature</title><author>Ruojing Peng ; White, Alec F ; Zhai, Huanchen ; Chan, Garnet Kin-Lic</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a522-b04dc465ef7073b3d82b5cb64994fdbef6b4b9d9eeb406134d1e639fd3ad60463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Clusters</topic><topic>Conservation laws</topic><topic>Dynamics</topic><topic>Time dependence</topic><toplevel>online_resources</toplevel><creatorcontrib>Ruojing Peng</creatorcontrib><creatorcontrib>White, Alec F</creatorcontrib><creatorcontrib>Zhai, Huanchen</creatorcontrib><creatorcontrib>Chan, Garnet Kin-Lic</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ruojing Peng</au><au>White, Alec F</au><au>Zhai, Huanchen</au><au>Chan, Garnet Kin-Lic</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conservation laws in coupled cluster dynamics at finite-temperature</atitle><jtitle>arXiv.org</jtitle><date>2021-06-04</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>We extend the finite-temperature Keldysh non-equilibrium coupled cluster theory (Keldysh-CC) [{\it J. Chem. Theory Comput.} \textbf{2019}, 15, 6137-6253] to include a time-dependent orbital basis. When chosen to minimize the action, such a basis restores local and global conservation laws (Ehrenfest's theorem) for all one-particle properties, while remaining energy conserving for time-independent Hamiltonians. We present the time-dependent orbital-optimized coupled cluster doubles method (Keldysh-OCCD) in analogy with the formalism for zero-temperature dynamics, extended to finite temperatures through the time-dependent action on the Keldysh contour. To demonstrate the conservation property and understand the numerical performance of the method, we apply it to several problems of non-equilibrium finite-temperature dynamics: a 1D Hubbard model with a time-dependent Peierls phase, laser driving of molecular H\(_2\), driven dynamics in warm-dense silicon, and transport in the single impurity Anderson model.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2106.02691</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_2538897482
source Publicly Available Content Database
subjects Clusters
Conservation laws
Dynamics
Time dependence
title Conservation laws in coupled cluster dynamics at finite-temperature
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T05%3A42%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conservation%20laws%20in%20coupled%20cluster%20dynamics%20at%20finite-temperature&rft.jtitle=arXiv.org&rft.au=Ruojing%20Peng&rft.date=2021-06-04&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2106.02691&rft_dat=%3Cproquest%3E2538897482%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a522-b04dc465ef7073b3d82b5cb64994fdbef6b4b9d9eeb406134d1e639fd3ad60463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2538897482&rft_id=info:pmid/&rfr_iscdi=true