Loading…
Multi-fidelity design optimisation strategy under uncertainty with limited computational budget
In this work, a design optimisation strategy is presented for expensive and uncertain single- and multi-objective problems. Computationally expensive design fitness evaluations prohibit the application of standard optimisation techniques and the direct calculation of risk measures. Therefore, a surr...
Saved in:
Published in: | Optimization and engineering 2021-06, Vol.22 (2), p.1039-1064 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c367t-ed6e76c8a79cb736b88823de228c595ffa08e96706779f016aab8aa89acaa6473 |
---|---|
cites | cdi_FETCH-LOGICAL-c367t-ed6e76c8a79cb736b88823de228c595ffa08e96706779f016aab8aa89acaa6473 |
container_end_page | 1064 |
container_issue | 2 |
container_start_page | 1039 |
container_title | Optimization and engineering |
container_volume | 22 |
creator | Korondi, Péter Zénó Marchi, Mariapia Parussini, Lucia Poloni, Carlo |
description | In this work, a design optimisation strategy is presented for expensive and uncertain single- and multi-objective problems. Computationally expensive design fitness evaluations prohibit the application of standard optimisation techniques and the direct calculation of risk measures. Therefore, a surrogate-assisted optimisation framework is presented. The computational budget limits the number of high-fidelity simulations which makes impossible to accurately approximate the landscape. This motivates the use of cheap low-fidelity simulations to obtain more information about the unexplored locations of the design space. The information stemming from numerical experiments of various fidelities can be fused together with multi-fidelity Gaussian process regression to build an accurate surrogate model despite the low number of high-fidelity simulations. We propose a new strategy for automatically selecting the fidelity level of the surrogate model update. The proposed method is extended to multi-objective applications. Although, Gaussian processes can inherently model uncertain processes, here the deterministic input and uncertain parameters are treated separately and only the design space is modelled with a Gaussian process. The probabilistic space is modelled with a polynomial chaos expansion to allow also uncertainties of non-Gaussian type. The combination of the above techniques allows us to efficiently carry out a (multi-objective) design optimisation under uncertainty which otherwise would be impractical. |
doi_str_mv | 10.1007/s11081-020-09510-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2539268627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2539268627</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-ed6e76c8a79cb736b88823de228c595ffa08e96706779f016aab8aa89acaa6473</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wisTb4kfixRBUvqYgNrK2J4wRXaVJsR6h_j9sgsWMzM4tzr0YHoWtKbikh8i5SShTFhBFMdEUJpidoQSvJMdOsPM03VxqXJSPn6CLGDSFUVEwtkHmd-uRx6xvX-7QvGhd9NxTjLvmtj5D8OBQxBUiu2xfT0LiQp3UhgR8y_u3TZ9FnNLmmsON2N6VjBvqinprOpUt01kIf3dXvXqKPx4f31TNevz29rO7X2HIhE3aNcFJYBVLbWnJRK6UYbxxjyla6alsgymkhiZBSt_l5gFoBKA0WQJSSL9HN3LsL49fkYjKbcQr5j2hYxTUTSrADxWbKhjHG4FqzC34LYW8oMQeRZhZpskhzFGloDvE5FDM8dC78Vf-T-gFCHXhm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2539268627</pqid></control><display><type>article</type><title>Multi-fidelity design optimisation strategy under uncertainty with limited computational budget</title><source>Springer Nature</source><creator>Korondi, Péter Zénó ; Marchi, Mariapia ; Parussini, Lucia ; Poloni, Carlo</creator><creatorcontrib>Korondi, Péter Zénó ; Marchi, Mariapia ; Parussini, Lucia ; Poloni, Carlo</creatorcontrib><description>In this work, a design optimisation strategy is presented for expensive and uncertain single- and multi-objective problems. Computationally expensive design fitness evaluations prohibit the application of standard optimisation techniques and the direct calculation of risk measures. Therefore, a surrogate-assisted optimisation framework is presented. The computational budget limits the number of high-fidelity simulations which makes impossible to accurately approximate the landscape. This motivates the use of cheap low-fidelity simulations to obtain more information about the unexplored locations of the design space. The information stemming from numerical experiments of various fidelities can be fused together with multi-fidelity Gaussian process regression to build an accurate surrogate model despite the low number of high-fidelity simulations. We propose a new strategy for automatically selecting the fidelity level of the surrogate model update. The proposed method is extended to multi-objective applications. Although, Gaussian processes can inherently model uncertain processes, here the deterministic input and uncertain parameters are treated separately and only the design space is modelled with a Gaussian process. The probabilistic space is modelled with a polynomial chaos expansion to allow also uncertainties of non-Gaussian type. The combination of the above techniques allows us to efficiently carry out a (multi-objective) design optimisation under uncertainty which otherwise would be impractical.</description><identifier>ISSN: 1389-4420</identifier><identifier>EISSN: 1573-2924</identifier><identifier>DOI: 10.1007/s11081-020-09510-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accuracy ; Budgets ; Control ; Design optimization ; Engineering ; Environmental Management ; Financial Engineering ; Gaussian process ; Mathematics ; Mathematics and Statistics ; Multiple objective analysis ; Normal distribution ; Operations Research/Decision Theory ; Optimization ; Parameter uncertainty ; Polynomials ; Research Article ; Simulation ; Statistical analysis ; Strategy ; Systems Theory</subject><ispartof>Optimization and engineering, 2021-06, Vol.22 (2), p.1039-1064</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-ed6e76c8a79cb736b88823de228c595ffa08e96706779f016aab8aa89acaa6473</citedby><cites>FETCH-LOGICAL-c367t-ed6e76c8a79cb736b88823de228c595ffa08e96706779f016aab8aa89acaa6473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Korondi, Péter Zénó</creatorcontrib><creatorcontrib>Marchi, Mariapia</creatorcontrib><creatorcontrib>Parussini, Lucia</creatorcontrib><creatorcontrib>Poloni, Carlo</creatorcontrib><title>Multi-fidelity design optimisation strategy under uncertainty with limited computational budget</title><title>Optimization and engineering</title><addtitle>Optim Eng</addtitle><description>In this work, a design optimisation strategy is presented for expensive and uncertain single- and multi-objective problems. Computationally expensive design fitness evaluations prohibit the application of standard optimisation techniques and the direct calculation of risk measures. Therefore, a surrogate-assisted optimisation framework is presented. The computational budget limits the number of high-fidelity simulations which makes impossible to accurately approximate the landscape. This motivates the use of cheap low-fidelity simulations to obtain more information about the unexplored locations of the design space. The information stemming from numerical experiments of various fidelities can be fused together with multi-fidelity Gaussian process regression to build an accurate surrogate model despite the low number of high-fidelity simulations. We propose a new strategy for automatically selecting the fidelity level of the surrogate model update. The proposed method is extended to multi-objective applications. Although, Gaussian processes can inherently model uncertain processes, here the deterministic input and uncertain parameters are treated separately and only the design space is modelled with a Gaussian process. The probabilistic space is modelled with a polynomial chaos expansion to allow also uncertainties of non-Gaussian type. The combination of the above techniques allows us to efficiently carry out a (multi-objective) design optimisation under uncertainty which otherwise would be impractical.</description><subject>Accuracy</subject><subject>Budgets</subject><subject>Control</subject><subject>Design optimization</subject><subject>Engineering</subject><subject>Environmental Management</subject><subject>Financial Engineering</subject><subject>Gaussian process</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Multiple objective analysis</subject><subject>Normal distribution</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Parameter uncertainty</subject><subject>Polynomials</subject><subject>Research Article</subject><subject>Simulation</subject><subject>Statistical analysis</subject><subject>Strategy</subject><subject>Systems Theory</subject><issn>1389-4420</issn><issn>1573-2924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwA6wisTb4kfixRBUvqYgNrK2J4wRXaVJsR6h_j9sgsWMzM4tzr0YHoWtKbikh8i5SShTFhBFMdEUJpidoQSvJMdOsPM03VxqXJSPn6CLGDSFUVEwtkHmd-uRx6xvX-7QvGhd9NxTjLvmtj5D8OBQxBUiu2xfT0LiQp3UhgR8y_u3TZ9FnNLmmsON2N6VjBvqinprOpUt01kIf3dXvXqKPx4f31TNevz29rO7X2HIhE3aNcFJYBVLbWnJRK6UYbxxjyla6alsgymkhiZBSt_l5gFoBKA0WQJSSL9HN3LsL49fkYjKbcQr5j2hYxTUTSrADxWbKhjHG4FqzC34LYW8oMQeRZhZpskhzFGloDvE5FDM8dC78Vf-T-gFCHXhm</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Korondi, Péter Zénó</creator><creator>Marchi, Mariapia</creator><creator>Parussini, Lucia</creator><creator>Poloni, Carlo</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20210601</creationdate><title>Multi-fidelity design optimisation strategy under uncertainty with limited computational budget</title><author>Korondi, Péter Zénó ; Marchi, Mariapia ; Parussini, Lucia ; Poloni, Carlo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-ed6e76c8a79cb736b88823de228c595ffa08e96706779f016aab8aa89acaa6473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Budgets</topic><topic>Control</topic><topic>Design optimization</topic><topic>Engineering</topic><topic>Environmental Management</topic><topic>Financial Engineering</topic><topic>Gaussian process</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Multiple objective analysis</topic><topic>Normal distribution</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Parameter uncertainty</topic><topic>Polynomials</topic><topic>Research Article</topic><topic>Simulation</topic><topic>Statistical analysis</topic><topic>Strategy</topic><topic>Systems Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Korondi, Péter Zénó</creatorcontrib><creatorcontrib>Marchi, Mariapia</creatorcontrib><creatorcontrib>Parussini, Lucia</creatorcontrib><creatorcontrib>Poloni, Carlo</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Optimization and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Korondi, Péter Zénó</au><au>Marchi, Mariapia</au><au>Parussini, Lucia</au><au>Poloni, Carlo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-fidelity design optimisation strategy under uncertainty with limited computational budget</atitle><jtitle>Optimization and engineering</jtitle><stitle>Optim Eng</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>22</volume><issue>2</issue><spage>1039</spage><epage>1064</epage><pages>1039-1064</pages><issn>1389-4420</issn><eissn>1573-2924</eissn><abstract>In this work, a design optimisation strategy is presented for expensive and uncertain single- and multi-objective problems. Computationally expensive design fitness evaluations prohibit the application of standard optimisation techniques and the direct calculation of risk measures. Therefore, a surrogate-assisted optimisation framework is presented. The computational budget limits the number of high-fidelity simulations which makes impossible to accurately approximate the landscape. This motivates the use of cheap low-fidelity simulations to obtain more information about the unexplored locations of the design space. The information stemming from numerical experiments of various fidelities can be fused together with multi-fidelity Gaussian process regression to build an accurate surrogate model despite the low number of high-fidelity simulations. We propose a new strategy for automatically selecting the fidelity level of the surrogate model update. The proposed method is extended to multi-objective applications. Although, Gaussian processes can inherently model uncertain processes, here the deterministic input and uncertain parameters are treated separately and only the design space is modelled with a Gaussian process. The probabilistic space is modelled with a polynomial chaos expansion to allow also uncertainties of non-Gaussian type. The combination of the above techniques allows us to efficiently carry out a (multi-objective) design optimisation under uncertainty which otherwise would be impractical.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11081-020-09510-1</doi><tpages>26</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1389-4420 |
ispartof | Optimization and engineering, 2021-06, Vol.22 (2), p.1039-1064 |
issn | 1389-4420 1573-2924 |
language | eng |
recordid | cdi_proquest_journals_2539268627 |
source | Springer Nature |
subjects | Accuracy Budgets Control Design optimization Engineering Environmental Management Financial Engineering Gaussian process Mathematics Mathematics and Statistics Multiple objective analysis Normal distribution Operations Research/Decision Theory Optimization Parameter uncertainty Polynomials Research Article Simulation Statistical analysis Strategy Systems Theory |
title | Multi-fidelity design optimisation strategy under uncertainty with limited computational budget |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T05%3A55%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-fidelity%20design%20optimisation%20strategy%20under%20uncertainty%20with%20limited%20computational%20budget&rft.jtitle=Optimization%20and%20engineering&rft.au=Korondi,%20P%C3%A9ter%20Z%C3%A9n%C3%B3&rft.date=2021-06-01&rft.volume=22&rft.issue=2&rft.spage=1039&rft.epage=1064&rft.pages=1039-1064&rft.issn=1389-4420&rft.eissn=1573-2924&rft_id=info:doi/10.1007/s11081-020-09510-1&rft_dat=%3Cproquest_cross%3E2539268627%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c367t-ed6e76c8a79cb736b88823de228c595ffa08e96706779f016aab8aa89acaa6473%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2539268627&rft_id=info:pmid/&rfr_iscdi=true |