Loading…
Mathematical model of COVID-19 intervention scenarios for São Paulo- Brazil
An epidemiological compartmental model was used to simulate social distancing strategies to contain the COVID-19 pandemic and prevent a second wave in São Paulo, Brazil. Optimization using genetic algorithm was used to determine the optimal solutions. Our results suggest the best-case strategy for S...
Saved in:
Published in: | Nature Portfolio 2020 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Text Resource |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | Nature Portfolio |
container_volume | |
creator | Osmar Pinto Neto José Clark Reis Ana Carolina Brisola Brizzi Zambrano, Gustavo José Joabe Marcos de Souza Wellington Amorim Pedroso Rodrigo Cunha de Mello Pedreiro Bruno de Matos Brizzi Ellysson Oliveira Abinade Kennedy, Deanna M Renato Amaro Zângaro |
description | An epidemiological compartmental model was used to simulate social distancing strategies to contain the COVID-19 pandemic and prevent a second wave in São Paulo, Brazil. Optimization using genetic algorithm was used to determine the optimal solutions. Our results suggest the best-case strategy for São Paulo is to maintain or increase the current magnitude of social distancing for at least 60 more days and increase the current levels of personal protection behaviors by a minimum of 10% (e.g., wearing facemasks, proper hand hygiene and avoid agglomeration). Followed by a long-term oscillatory level of social distancing with a stepping-down approach every 80 days over a period of two years with continued protective behavior. |
doi_str_mv | 10.21203/rs.3.rs-32962/v1 |
format | text_resource |
fullrecord | <record><control><sourceid>proquest_COVID</sourceid><recordid>TN_cdi_proquest_journals_2539308382</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2539308382</sourcerecordid><originalsourceid>FETCH-LOGICAL-p711-3559ca6b06f85c9cad1ae51da8cbefd6db8de9eec3a4ed348bbe79549af7a6d23</originalsourceid><addsrcrecordid>eNotjbtOwzAUQL0woMIHsFlidhr7xok9QnhVKioSFWt1Y1-LoDQudtKB3-FT-DEqwXTOdA5jV7IslFQlLFMuoEhZgLK1Wh7lOVs_4_ROe5x6hwPfR08Dj4G3m7fVnZCW9-NE6Ujj1MeRZ0cjpj5mHmLirz_fkb_gPETBbxN-9cMFOws4ZLr854JtH-637ZNYbx5X7c1aHBopBWhtHdZdWQej3Um9RNLSo3EdBV_7zniyRA6wIg-V6TpqrK4shgZrr2DBrv-yhxQ_Z8rT7iPOaTwdd0qDhdKAUfALQg5LOA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>text_resource</recordtype><pqid>2539308382</pqid></control><display><type>text_resource</type><title>Mathematical model of COVID-19 intervention scenarios for São Paulo- Brazil</title><source>Coronavirus Research Database</source><creator>Osmar Pinto Neto ; José Clark Reis ; Ana Carolina Brisola Brizzi ; Zambrano, Gustavo José ; Joabe Marcos de Souza ; Wellington Amorim Pedroso ; Rodrigo Cunha de Mello Pedreiro ; Bruno de Matos Brizzi ; Ellysson Oliveira Abinade ; Kennedy, Deanna M ; Renato Amaro Zângaro</creator><creatorcontrib>Osmar Pinto Neto ; José Clark Reis ; Ana Carolina Brisola Brizzi ; Zambrano, Gustavo José ; Joabe Marcos de Souza ; Wellington Amorim Pedroso ; Rodrigo Cunha de Mello Pedreiro ; Bruno de Matos Brizzi ; Ellysson Oliveira Abinade ; Kennedy, Deanna M ; Renato Amaro Zângaro</creatorcontrib><description>An epidemiological compartmental model was used to simulate social distancing strategies to contain the COVID-19 pandemic and prevent a second wave in São Paulo, Brazil. Optimization using genetic algorithm was used to determine the optimal solutions. Our results suggest the best-case strategy for São Paulo is to maintain or increase the current magnitude of social distancing for at least 60 more days and increase the current levels of personal protection behaviors by a minimum of 10% (e.g., wearing facemasks, proper hand hygiene and avoid agglomeration). Followed by a long-term oscillatory level of social distancing with a stepping-down approach every 80 days over a period of two years with continued protective behavior.</description><identifier>DOI: 10.21203/rs.3.rs-32962/v1</identifier><language>eng</language><publisher>Durham: Research Square</publisher><subject>Coronaviruses ; COVID-19 ; Social distancing</subject><ispartof>Nature Portfolio, 2020</ispartof><rights>2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2539308382?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,27925,38516,43895</link.rule.ids><linktorsrc>$$Uhttps://www.proquest.com/docview/2539308382?pq-origsite=primo$$EView_record_in_ProQuest$$FView_record_in_$$GProQuest$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Osmar Pinto Neto</creatorcontrib><creatorcontrib>José Clark Reis</creatorcontrib><creatorcontrib>Ana Carolina Brisola Brizzi</creatorcontrib><creatorcontrib>Zambrano, Gustavo José</creatorcontrib><creatorcontrib>Joabe Marcos de Souza</creatorcontrib><creatorcontrib>Wellington Amorim Pedroso</creatorcontrib><creatorcontrib>Rodrigo Cunha de Mello Pedreiro</creatorcontrib><creatorcontrib>Bruno de Matos Brizzi</creatorcontrib><creatorcontrib>Ellysson Oliveira Abinade</creatorcontrib><creatorcontrib>Kennedy, Deanna M</creatorcontrib><creatorcontrib>Renato Amaro Zângaro</creatorcontrib><title>Mathematical model of COVID-19 intervention scenarios for São Paulo- Brazil</title><title>Nature Portfolio</title><description>An epidemiological compartmental model was used to simulate social distancing strategies to contain the COVID-19 pandemic and prevent a second wave in São Paulo, Brazil. Optimization using genetic algorithm was used to determine the optimal solutions. Our results suggest the best-case strategy for São Paulo is to maintain or increase the current magnitude of social distancing for at least 60 more days and increase the current levels of personal protection behaviors by a minimum of 10% (e.g., wearing facemasks, proper hand hygiene and avoid agglomeration). Followed by a long-term oscillatory level of social distancing with a stepping-down approach every 80 days over a period of two years with continued protective behavior.</description><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Social distancing</subject><fulltext>true</fulltext><rsrctype>text_resource</rsrctype><creationdate>2020</creationdate><recordtype>text_resource</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><recordid>eNotjbtOwzAUQL0woMIHsFlidhr7xok9QnhVKioSFWt1Y1-LoDQudtKB3-FT-DEqwXTOdA5jV7IslFQlLFMuoEhZgLK1Wh7lOVs_4_ROe5x6hwPfR08Dj4G3m7fVnZCW9-NE6Ujj1MeRZ0cjpj5mHmLirz_fkb_gPETBbxN-9cMFOws4ZLr854JtH-637ZNYbx5X7c1aHBopBWhtHdZdWQej3Um9RNLSo3EdBV_7zniyRA6wIg-V6TpqrK4shgZrr2DBrv-yhxQ_Z8rT7iPOaTwdd0qDhdKAUfALQg5LOA</recordid><startdate>20200602</startdate><enddate>20200602</enddate><creator>Osmar Pinto Neto</creator><creator>José Clark Reis</creator><creator>Ana Carolina Brisola Brizzi</creator><creator>Zambrano, Gustavo José</creator><creator>Joabe Marcos de Souza</creator><creator>Wellington Amorim Pedroso</creator><creator>Rodrigo Cunha de Mello Pedreiro</creator><creator>Bruno de Matos Brizzi</creator><creator>Ellysson Oliveira Abinade</creator><creator>Kennedy, Deanna M</creator><creator>Renato Amaro Zângaro</creator><general>Research Square</general><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>AAFGM</scope><scope>ABUWG</scope><scope>ADZZV</scope><scope>AFKRA</scope><scope>AFLLJ</scope><scope>AFOLM</scope><scope>AGAJT</scope><scope>AQTIP</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>M2P</scope><scope>PIMPY</scope><scope>PQCXX</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20200602</creationdate><title>Mathematical model of COVID-19 intervention scenarios for São Paulo- Brazil</title><author>Osmar Pinto Neto ; José Clark Reis ; Ana Carolina Brisola Brizzi ; Zambrano, Gustavo José ; Joabe Marcos de Souza ; Wellington Amorim Pedroso ; Rodrigo Cunha de Mello Pedreiro ; Bruno de Matos Brizzi ; Ellysson Oliveira Abinade ; Kennedy, Deanna M ; Renato Amaro Zângaro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p711-3559ca6b06f85c9cad1ae51da8cbefd6db8de9eec3a4ed348bbe79549af7a6d23</frbrgroupid><rsrctype>text_resources</rsrctype><prefilter>text_resources</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Social distancing</topic><toplevel>online_resources</toplevel><creatorcontrib>Osmar Pinto Neto</creatorcontrib><creatorcontrib>José Clark Reis</creatorcontrib><creatorcontrib>Ana Carolina Brisola Brizzi</creatorcontrib><creatorcontrib>Zambrano, Gustavo José</creatorcontrib><creatorcontrib>Joabe Marcos de Souza</creatorcontrib><creatorcontrib>Wellington Amorim Pedroso</creatorcontrib><creatorcontrib>Rodrigo Cunha de Mello Pedreiro</creatorcontrib><creatorcontrib>Bruno de Matos Brizzi</creatorcontrib><creatorcontrib>Ellysson Oliveira Abinade</creatorcontrib><creatorcontrib>Kennedy, Deanna M</creatorcontrib><creatorcontrib>Renato Amaro Zângaro</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Osmar Pinto Neto</au><au>José Clark Reis</au><au>Ana Carolina Brisola Brizzi</au><au>Zambrano, Gustavo José</au><au>Joabe Marcos de Souza</au><au>Wellington Amorim Pedroso</au><au>Rodrigo Cunha de Mello Pedreiro</au><au>Bruno de Matos Brizzi</au><au>Ellysson Oliveira Abinade</au><au>Kennedy, Deanna M</au><au>Renato Amaro Zângaro</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Mathematical model of COVID-19 intervention scenarios for São Paulo- Brazil</atitle><jtitle>Nature Portfolio</jtitle><date>2020-06-02</date><risdate>2020</risdate><abstract>An epidemiological compartmental model was used to simulate social distancing strategies to contain the COVID-19 pandemic and prevent a second wave in São Paulo, Brazil. Optimization using genetic algorithm was used to determine the optimal solutions. Our results suggest the best-case strategy for São Paulo is to maintain or increase the current magnitude of social distancing for at least 60 more days and increase the current levels of personal protection behaviors by a minimum of 10% (e.g., wearing facemasks, proper hand hygiene and avoid agglomeration). Followed by a long-term oscillatory level of social distancing with a stepping-down approach every 80 days over a period of two years with continued protective behavior.</abstract><cop>Durham</cop><pub>Research Square</pub><doi>10.21203/rs.3.rs-32962/v1</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | DOI: 10.21203/rs.3.rs-32962/v1 |
ispartof | Nature Portfolio, 2020 |
issn | |
language | eng |
recordid | cdi_proquest_journals_2539308382 |
source | Coronavirus Research Database |
subjects | Coronaviruses COVID-19 Social distancing |
title | Mathematical model of COVID-19 intervention scenarios for São Paulo- Brazil |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A07%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_COVID&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Mathematical%20model%20of%20COVID-19%20intervention%20scenarios%20for%20S%C3%A3o%20Paulo-%20Brazil&rft.jtitle=Nature%20Portfolio&rft.au=Osmar%20Pinto%20Neto&rft.date=2020-06-02&rft_id=info:doi/10.21203/rs.3.rs-32962/v1&rft_dat=%3Cproquest_COVID%3E2539308382%3C/proquest_COVID%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p711-3559ca6b06f85c9cad1ae51da8cbefd6db8de9eec3a4ed348bbe79549af7a6d23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2539308382&rft_id=info:pmid/&rfr_iscdi=true |