Loading…

Towards a self-sufficient face verification system

•Self-updating approach for video-to-video face verification tasks.•Proposal of Dynamic ensemble of SVMs as an adaptive biometric system.•Ensembles self-update to target appearance changes due to time or ambient factors.•Incremental learning takes place online when new positive samples emerge.•Resul...

Full description

Saved in:
Bibliographic Details
Published in:Expert systems with applications 2021-07, Vol.174, p.114734, Article 114734
Main Authors: Lopez-Lopez, Eric, Regueiro, Carlos V., Pardo, Xosé M., Franco, Annalisa, Lumini, Alessandra
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c372t-f24903b6fa30080f9bbcc1ed2fe1554aca5314be76245220935f8f9debf792fc3
cites cdi_FETCH-LOGICAL-c372t-f24903b6fa30080f9bbcc1ed2fe1554aca5314be76245220935f8f9debf792fc3
container_end_page
container_issue
container_start_page 114734
container_title Expert systems with applications
container_volume 174
creator Lopez-Lopez, Eric
Regueiro, Carlos V.
Pardo, Xosé M.
Franco, Annalisa
Lumini, Alessandra
description •Self-updating approach for video-to-video face verification tasks.•Proposal of Dynamic ensemble of SVMs as an adaptive biometric system.•Ensembles self-update to target appearance changes due to time or ambient factors.•Incremental learning takes place online when new positive samples emerge.•Results show the viability of the proposal against other analogous approaches. The absence of a previous collaborative manual enrolment represents a significant handicap towards designing a face verification system for face re-identification purposes. In this scenario, the system must learn the target identity incrementally, using data from the video stream during the operational authentication phase. So, manual labelling cannot be assumed apart from the first few frames. On the other hand, even the most advanced methods trained on large-scale and unconstrained datasets suffer performance degradation when no adaptation to specific contexts is performed. This work proposes an adaptive face verification system, for the continuous re-identification of target identity, within the framework of incremental unsupervised learning. Our Dynamic Ensemble of SVM is capable of incorporating non-labelled information to improve the performance of any model, even when its initial performance is modest. The proposal uses the self-training approach and is compared against other classification techniques within this same approach. Results show promising behaviour in terms of both knowledge acquisition and impostor robustness.
doi_str_mv 10.1016/j.eswa.2021.114734
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2539561811</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957417421001755</els_id><sourcerecordid>2539561811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-f24903b6fa30080f9bbcc1ed2fe1554aca5314be76245220935f8f9debf792fc3</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFb_gKeA58Sd_chmwYsUrULBSz0vm80sbGiTupu29N-bEM-eBob3mY-HkEegBVAon9sC09kWjDIoAITi4oosoFI8L5Xm12RBtVS5ACVuyV1KLaWgKFULwrb92cYmZTZLuPN5OnofXMBuyLx1mJ0whrFhh9B3WbqkAff35MbbXcKHv7ok3-9v29VHvvlaf65eN7njig25Z0JTXpfeckor6nVdOwfYMI8gpbDOSg6iRlUyIRmjmktfed1g7ZVm3vEleZrnHmL_c8Q0mLY_xm5caZjkWpZQAYwpNqdc7FOK6M0hhr2NFwPUTG5MayY3ZnJjZjcj9DJDON5_ChhNmn522ISIbjBNH_7DfwGsGmxX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2539561811</pqid></control><display><type>article</type><title>Towards a self-sufficient face verification system</title><source>ScienceDirect Freedom Collection</source><creator>Lopez-Lopez, Eric ; Regueiro, Carlos V. ; Pardo, Xosé M. ; Franco, Annalisa ; Lumini, Alessandra</creator><creatorcontrib>Lopez-Lopez, Eric ; Regueiro, Carlos V. ; Pardo, Xosé M. ; Franco, Annalisa ; Lumini, Alessandra</creatorcontrib><description>•Self-updating approach for video-to-video face verification tasks.•Proposal of Dynamic ensemble of SVMs as an adaptive biometric system.•Ensembles self-update to target appearance changes due to time or ambient factors.•Incremental learning takes place online when new positive samples emerge.•Results show the viability of the proposal against other analogous approaches. The absence of a previous collaborative manual enrolment represents a significant handicap towards designing a face verification system for face re-identification purposes. In this scenario, the system must learn the target identity incrementally, using data from the video stream during the operational authentication phase. So, manual labelling cannot be assumed apart from the first few frames. On the other hand, even the most advanced methods trained on large-scale and unconstrained datasets suffer performance degradation when no adaptation to specific contexts is performed. This work proposes an adaptive face verification system, for the continuous re-identification of target identity, within the framework of incremental unsupervised learning. Our Dynamic Ensemble of SVM is capable of incorporating non-labelled information to improve the performance of any model, even when its initial performance is modest. The proposal uses the self-training approach and is compared against other classification techniques within this same approach. Results show promising behaviour in terms of both knowledge acquisition and impostor robustness.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2021.114734</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Adaptive biometrics ; Face recognition ; Incremental learning ; Knowledge acquisition ; Performance degradation ; Performance enhancement ; Target recognition ; Unsupervised learning ; Verification ; Video data ; Video surveillance ; Video-to-video face verification</subject><ispartof>Expert systems with applications, 2021-07, Vol.174, p.114734, Article 114734</ispartof><rights>2021 The Authors</rights><rights>Copyright Elsevier BV Jul 15, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-f24903b6fa30080f9bbcc1ed2fe1554aca5314be76245220935f8f9debf792fc3</citedby><cites>FETCH-LOGICAL-c372t-f24903b6fa30080f9bbcc1ed2fe1554aca5314be76245220935f8f9debf792fc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Lopez-Lopez, Eric</creatorcontrib><creatorcontrib>Regueiro, Carlos V.</creatorcontrib><creatorcontrib>Pardo, Xosé M.</creatorcontrib><creatorcontrib>Franco, Annalisa</creatorcontrib><creatorcontrib>Lumini, Alessandra</creatorcontrib><title>Towards a self-sufficient face verification system</title><title>Expert systems with applications</title><description>•Self-updating approach for video-to-video face verification tasks.•Proposal of Dynamic ensemble of SVMs as an adaptive biometric system.•Ensembles self-update to target appearance changes due to time or ambient factors.•Incremental learning takes place online when new positive samples emerge.•Results show the viability of the proposal against other analogous approaches. The absence of a previous collaborative manual enrolment represents a significant handicap towards designing a face verification system for face re-identification purposes. In this scenario, the system must learn the target identity incrementally, using data from the video stream during the operational authentication phase. So, manual labelling cannot be assumed apart from the first few frames. On the other hand, even the most advanced methods trained on large-scale and unconstrained datasets suffer performance degradation when no adaptation to specific contexts is performed. This work proposes an adaptive face verification system, for the continuous re-identification of target identity, within the framework of incremental unsupervised learning. Our Dynamic Ensemble of SVM is capable of incorporating non-labelled information to improve the performance of any model, even when its initial performance is modest. The proposal uses the self-training approach and is compared against other classification techniques within this same approach. Results show promising behaviour in terms of both knowledge acquisition and impostor robustness.</description><subject>Adaptive biometrics</subject><subject>Face recognition</subject><subject>Incremental learning</subject><subject>Knowledge acquisition</subject><subject>Performance degradation</subject><subject>Performance enhancement</subject><subject>Target recognition</subject><subject>Unsupervised learning</subject><subject>Verification</subject><subject>Video data</subject><subject>Video surveillance</subject><subject>Video-to-video face verification</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRsFb_gKeA58Sd_chmwYsUrULBSz0vm80sbGiTupu29N-bEM-eBob3mY-HkEegBVAon9sC09kWjDIoAITi4oosoFI8L5Xm12RBtVS5ACVuyV1KLaWgKFULwrb92cYmZTZLuPN5OnofXMBuyLx1mJ0whrFhh9B3WbqkAff35MbbXcKHv7ok3-9v29VHvvlaf65eN7njig25Z0JTXpfeckor6nVdOwfYMI8gpbDOSg6iRlUyIRmjmktfed1g7ZVm3vEleZrnHmL_c8Q0mLY_xm5caZjkWpZQAYwpNqdc7FOK6M0hhr2NFwPUTG5MayY3ZnJjZjcj9DJDON5_ChhNmn522ISIbjBNH_7DfwGsGmxX</recordid><startdate>20210715</startdate><enddate>20210715</enddate><creator>Lopez-Lopez, Eric</creator><creator>Regueiro, Carlos V.</creator><creator>Pardo, Xosé M.</creator><creator>Franco, Annalisa</creator><creator>Lumini, Alessandra</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20210715</creationdate><title>Towards a self-sufficient face verification system</title><author>Lopez-Lopez, Eric ; Regueiro, Carlos V. ; Pardo, Xosé M. ; Franco, Annalisa ; Lumini, Alessandra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-f24903b6fa30080f9bbcc1ed2fe1554aca5314be76245220935f8f9debf792fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptive biometrics</topic><topic>Face recognition</topic><topic>Incremental learning</topic><topic>Knowledge acquisition</topic><topic>Performance degradation</topic><topic>Performance enhancement</topic><topic>Target recognition</topic><topic>Unsupervised learning</topic><topic>Verification</topic><topic>Video data</topic><topic>Video surveillance</topic><topic>Video-to-video face verification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lopez-Lopez, Eric</creatorcontrib><creatorcontrib>Regueiro, Carlos V.</creatorcontrib><creatorcontrib>Pardo, Xosé M.</creatorcontrib><creatorcontrib>Franco, Annalisa</creatorcontrib><creatorcontrib>Lumini, Alessandra</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lopez-Lopez, Eric</au><au>Regueiro, Carlos V.</au><au>Pardo, Xosé M.</au><au>Franco, Annalisa</au><au>Lumini, Alessandra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards a self-sufficient face verification system</atitle><jtitle>Expert systems with applications</jtitle><date>2021-07-15</date><risdate>2021</risdate><volume>174</volume><spage>114734</spage><pages>114734-</pages><artnum>114734</artnum><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>•Self-updating approach for video-to-video face verification tasks.•Proposal of Dynamic ensemble of SVMs as an adaptive biometric system.•Ensembles self-update to target appearance changes due to time or ambient factors.•Incremental learning takes place online when new positive samples emerge.•Results show the viability of the proposal against other analogous approaches. The absence of a previous collaborative manual enrolment represents a significant handicap towards designing a face verification system for face re-identification purposes. In this scenario, the system must learn the target identity incrementally, using data from the video stream during the operational authentication phase. So, manual labelling cannot be assumed apart from the first few frames. On the other hand, even the most advanced methods trained on large-scale and unconstrained datasets suffer performance degradation when no adaptation to specific contexts is performed. This work proposes an adaptive face verification system, for the continuous re-identification of target identity, within the framework of incremental unsupervised learning. Our Dynamic Ensemble of SVM is capable of incorporating non-labelled information to improve the performance of any model, even when its initial performance is modest. The proposal uses the self-training approach and is compared against other classification techniques within this same approach. Results show promising behaviour in terms of both knowledge acquisition and impostor robustness.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2021.114734</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0957-4174
ispartof Expert systems with applications, 2021-07, Vol.174, p.114734, Article 114734
issn 0957-4174
1873-6793
language eng
recordid cdi_proquest_journals_2539561811
source ScienceDirect Freedom Collection
subjects Adaptive biometrics
Face recognition
Incremental learning
Knowledge acquisition
Performance degradation
Performance enhancement
Target recognition
Unsupervised learning
Verification
Video data
Video surveillance
Video-to-video face verification
title Towards a self-sufficient face verification system
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T00%3A40%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20a%20self-sufficient%20face%20verification%20system&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Lopez-Lopez,%20Eric&rft.date=2021-07-15&rft.volume=174&rft.spage=114734&rft.pages=114734-&rft.artnum=114734&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2021.114734&rft_dat=%3Cproquest_cross%3E2539561811%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c372t-f24903b6fa30080f9bbcc1ed2fe1554aca5314be76245220935f8f9debf792fc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2539561811&rft_id=info:pmid/&rfr_iscdi=true