Loading…
Existence, comparison, and convergence results for a class of elliptic hemivariational inequalities
In this paper we study a class of elliptic boundary hemivariational inequalities which originates in the steady-state heat conduction problem with nonmonotone multivalued subdifferential boundary condition on a portion of the boundary described by the Clarke generalized gradient of a locally Lipschi...
Saved in:
Published in: | arXiv.org 2021-06 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Gariboldi, Claudia M Migórski, Stanisław Ochal, Anna Tarzia, Domingo A |
description | In this paper we study a class of elliptic boundary hemivariational inequalities which originates in the steady-state heat conduction problem with nonmonotone multivalued subdifferential boundary condition on a portion of the boundary described by the Clarke generalized gradient of a locally Lipschitz function. First, we prove a new existence result for the inequality employing the theory of pseudomonotone operators. Next, we give a result on comparison of solutions, and provide sufficient conditions that guarantee the asymptotic behavior of solution, when the heat transfer coefficient tends to infinity. Further, we show a result on the continuous dependence of solution on the internal energy and heat flux. Finally, some examples of convex and nonconvex potentials illustrate our hypotheses. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2539743439</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2539743439</sourcerecordid><originalsourceid>FETCH-proquest_journals_25397434393</originalsourceid><addsrcrecordid>eNqNi00KwjAQRoMgWLR3GHCrUJPWn7UoHsC9DHGqU9KkZtLi8a3gAVw9Pt73JirTxmzW-1LrmcpFmqIo9Hanq8pkyp7eLIm8pRXY0HYYWYJfAfr7uP1A8fGVEEl6lwTqEAHBOhSBUAM5x11iC09qeRhjTBw8OmBPrx4dJyZZqGmNTij_ca6W59P1eFl3Mbx6knRrQh_HSm66ModdaUpzMP-9PjSdRuw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2539743439</pqid></control><display><type>article</type><title>Existence, comparison, and convergence results for a class of elliptic hemivariational inequalities</title><source>Publicly Available Content Database</source><creator>Gariboldi, Claudia M ; Migórski, Stanisław ; Ochal, Anna ; Tarzia, Domingo A</creator><creatorcontrib>Gariboldi, Claudia M ; Migórski, Stanisław ; Ochal, Anna ; Tarzia, Domingo A</creatorcontrib><description>In this paper we study a class of elliptic boundary hemivariational inequalities which originates in the steady-state heat conduction problem with nonmonotone multivalued subdifferential boundary condition on a portion of the boundary described by the Clarke generalized gradient of a locally Lipschitz function. First, we prove a new existence result for the inequality employing the theory of pseudomonotone operators. Next, we give a result on comparison of solutions, and provide sufficient conditions that guarantee the asymptotic behavior of solution, when the heat transfer coefficient tends to infinity. Further, we show a result on the continuous dependence of solution on the internal energy and heat flux. Finally, some examples of convex and nonconvex potentials illustrate our hypotheses.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Asymptotic properties ; Boundary conditions ; Conduction heating ; Conductive heat transfer ; Heat flux ; Heat transfer coefficients ; Inequalities ; Internal energy ; Operators (mathematics)</subject><ispartof>arXiv.org, 2021-06</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2539743439?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Gariboldi, Claudia M</creatorcontrib><creatorcontrib>Migórski, Stanisław</creatorcontrib><creatorcontrib>Ochal, Anna</creatorcontrib><creatorcontrib>Tarzia, Domingo A</creatorcontrib><title>Existence, comparison, and convergence results for a class of elliptic hemivariational inequalities</title><title>arXiv.org</title><description>In this paper we study a class of elliptic boundary hemivariational inequalities which originates in the steady-state heat conduction problem with nonmonotone multivalued subdifferential boundary condition on a portion of the boundary described by the Clarke generalized gradient of a locally Lipschitz function. First, we prove a new existence result for the inequality employing the theory of pseudomonotone operators. Next, we give a result on comparison of solutions, and provide sufficient conditions that guarantee the asymptotic behavior of solution, when the heat transfer coefficient tends to infinity. Further, we show a result on the continuous dependence of solution on the internal energy and heat flux. Finally, some examples of convex and nonconvex potentials illustrate our hypotheses.</description><subject>Asymptotic properties</subject><subject>Boundary conditions</subject><subject>Conduction heating</subject><subject>Conductive heat transfer</subject><subject>Heat flux</subject><subject>Heat transfer coefficients</subject><subject>Inequalities</subject><subject>Internal energy</subject><subject>Operators (mathematics)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNi00KwjAQRoMgWLR3GHCrUJPWn7UoHsC9DHGqU9KkZtLi8a3gAVw9Pt73JirTxmzW-1LrmcpFmqIo9Hanq8pkyp7eLIm8pRXY0HYYWYJfAfr7uP1A8fGVEEl6lwTqEAHBOhSBUAM5x11iC09qeRhjTBw8OmBPrx4dJyZZqGmNTij_ca6W59P1eFl3Mbx6knRrQh_HSm66ModdaUpzMP-9PjSdRuw</recordid><startdate>20210608</startdate><enddate>20210608</enddate><creator>Gariboldi, Claudia M</creator><creator>Migórski, Stanisław</creator><creator>Ochal, Anna</creator><creator>Tarzia, Domingo A</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210608</creationdate><title>Existence, comparison, and convergence results for a class of elliptic hemivariational inequalities</title><author>Gariboldi, Claudia M ; Migórski, Stanisław ; Ochal, Anna ; Tarzia, Domingo A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25397434393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Asymptotic properties</topic><topic>Boundary conditions</topic><topic>Conduction heating</topic><topic>Conductive heat transfer</topic><topic>Heat flux</topic><topic>Heat transfer coefficients</topic><topic>Inequalities</topic><topic>Internal energy</topic><topic>Operators (mathematics)</topic><toplevel>online_resources</toplevel><creatorcontrib>Gariboldi, Claudia M</creatorcontrib><creatorcontrib>Migórski, Stanisław</creatorcontrib><creatorcontrib>Ochal, Anna</creatorcontrib><creatorcontrib>Tarzia, Domingo A</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gariboldi, Claudia M</au><au>Migórski, Stanisław</au><au>Ochal, Anna</au><au>Tarzia, Domingo A</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Existence, comparison, and convergence results for a class of elliptic hemivariational inequalities</atitle><jtitle>arXiv.org</jtitle><date>2021-06-08</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>In this paper we study a class of elliptic boundary hemivariational inequalities which originates in the steady-state heat conduction problem with nonmonotone multivalued subdifferential boundary condition on a portion of the boundary described by the Clarke generalized gradient of a locally Lipschitz function. First, we prove a new existence result for the inequality employing the theory of pseudomonotone operators. Next, we give a result on comparison of solutions, and provide sufficient conditions that guarantee the asymptotic behavior of solution, when the heat transfer coefficient tends to infinity. Further, we show a result on the continuous dependence of solution on the internal energy and heat flux. Finally, some examples of convex and nonconvex potentials illustrate our hypotheses.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2539743439 |
source | Publicly Available Content Database |
subjects | Asymptotic properties Boundary conditions Conduction heating Conductive heat transfer Heat flux Heat transfer coefficients Inequalities Internal energy Operators (mathematics) |
title | Existence, comparison, and convergence results for a class of elliptic hemivariational inequalities |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T12%3A19%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Existence,%20comparison,%20and%20convergence%20results%20for%20a%20class%20of%20elliptic%20hemivariational%20inequalities&rft.jtitle=arXiv.org&rft.au=Gariboldi,%20Claudia%20M&rft.date=2021-06-08&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2539743439%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_25397434393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2539743439&rft_id=info:pmid/&rfr_iscdi=true |