Loading…

Thermal properties of anharmonic Eckart potential model using Euler–MacLaurin formula

By employing the asymptotic iteration method (AIM), we solved the three-dimensional time-independent Schrödinger equation with the anharmonic Eckart potential model. The expression for the eigensolution of the anharmonic Eckart potential was obtained. With the help of the ro-vibrational energy spect...

Full description

Saved in:
Bibliographic Details
Published in:Pramāṇa 2021-09, Vol.95 (3), Article 98
Main Authors: Osobonye, G T, Adekanmbi, M, Ikot, A N, Okorie, U S, Rampho, G J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-ea7f531eab390fa53a4b4a5f8f990ce01991dc21c360fe548a5586f7d84ee2ff3
cites cdi_FETCH-LOGICAL-c319t-ea7f531eab390fa53a4b4a5f8f990ce01991dc21c360fe548a5586f7d84ee2ff3
container_end_page
container_issue 3
container_start_page
container_title Pramāṇa
container_volume 95
creator Osobonye, G T
Adekanmbi, M
Ikot, A N
Okorie, U S
Rampho, G J
description By employing the asymptotic iteration method (AIM), we solved the three-dimensional time-independent Schrödinger equation with the anharmonic Eckart potential model. The expression for the eigensolution of the anharmonic Eckart potential was obtained. With the help of the ro-vibrational energy spectra obtained, we derived the expressions for the ro-vibrational partition function and other thermodynamic functions, via the Euler MacLaurin formula. Effects of temperature and upper bound vibration quantum number on the thermodynamic functions of anharmonic Eckart potential were discussed for some diatomic molecular systems. It has been established that unique critical temperatures of ro-vibrational entropy and ro-vibrational specific heat capacity exist for the selected diatomic molecules.
doi_str_mv 10.1007/s12043-021-02122-z
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2539906085</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2539906085</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-ea7f531eab390fa53a4b4a5f8f990ce01991dc21c360fe548a5586f7d84ee2ff3</originalsourceid><addsrcrecordid>eNp9kL1OwzAUhS0EEqXwAkyWmAP-beIRVYUiFbEUMVque92mJHGwk4FOvANvyJPgEiQ2hqt7h--ce3QQuqTkmhKS30TKiOAZYfQwjGX7IzQiKudZTik9TjcnIhOsUKfoLMYdIVQJLkfoZbmFUJsKt8G3ELoSIvYOm2ZrQu2b0uKZfTWhw63voOnKRNZ-DRXuY9ls8KyvIHx9fD4auzB9KBvsfKj7ypyjE2eqCBe_e4ye72bL6TxbPN0_TG8XmeVUdRmY3ElOway4Is5IbsRKGOkKpxSxkFIquraMWj4hDqQojJTFxOXrQgAw5_gYXQ2-Kf9bD7HTO9-HJr3UTPJkMiGFTBQbKBt8jAGcbkNZm_CuKdGHAvVQoE7l6Z8C9T6J-CCKCW42EP6s_1F9AxCidh4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2539906085</pqid></control><display><type>article</type><title>Thermal properties of anharmonic Eckart potential model using Euler–MacLaurin formula</title><source>Indian Academy of Sciences</source><source>Springer Nature</source><creator>Osobonye, G T ; Adekanmbi, M ; Ikot, A N ; Okorie, U S ; Rampho, G J</creator><creatorcontrib>Osobonye, G T ; Adekanmbi, M ; Ikot, A N ; Okorie, U S ; Rampho, G J</creatorcontrib><description>By employing the asymptotic iteration method (AIM), we solved the three-dimensional time-independent Schrödinger equation with the anharmonic Eckart potential model. The expression for the eigensolution of the anharmonic Eckart potential was obtained. With the help of the ro-vibrational energy spectra obtained, we derived the expressions for the ro-vibrational partition function and other thermodynamic functions, via the Euler MacLaurin formula. Effects of temperature and upper bound vibration quantum number on the thermodynamic functions of anharmonic Eckart potential were discussed for some diatomic molecular systems. It has been established that unique critical temperatures of ro-vibrational entropy and ro-vibrational specific heat capacity exist for the selected diatomic molecules.</description><identifier>ISSN: 0304-4289</identifier><identifier>EISSN: 0973-7111</identifier><identifier>DOI: 10.1007/s12043-021-02122-z</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Anharmonicity ; Astronomy ; Astrophysics and Astroparticles ; Asymptotic methods ; Diatomic molecules ; Energy spectra ; Harmonic functions ; Iterative methods ; Observations and Techniques ; Partitions (mathematics) ; Physics ; Physics and Astronomy ; Schrodinger equation ; Temperature effects ; Thermodynamic properties ; Upper bounds</subject><ispartof>Pramāṇa, 2021-09, Vol.95 (3), Article 98</ispartof><rights>Indian Academy of Sciences 2021</rights><rights>Indian Academy of Sciences 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-ea7f531eab390fa53a4b4a5f8f990ce01991dc21c360fe548a5586f7d84ee2ff3</citedby><cites>FETCH-LOGICAL-c319t-ea7f531eab390fa53a4b4a5f8f990ce01991dc21c360fe548a5586f7d84ee2ff3</cites><orcidid>0000-0002-5660-0289</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Osobonye, G T</creatorcontrib><creatorcontrib>Adekanmbi, M</creatorcontrib><creatorcontrib>Ikot, A N</creatorcontrib><creatorcontrib>Okorie, U S</creatorcontrib><creatorcontrib>Rampho, G J</creatorcontrib><title>Thermal properties of anharmonic Eckart potential model using Euler–MacLaurin formula</title><title>Pramāṇa</title><addtitle>Pramana - J Phys</addtitle><description>By employing the asymptotic iteration method (AIM), we solved the three-dimensional time-independent Schrödinger equation with the anharmonic Eckart potential model. The expression for the eigensolution of the anharmonic Eckart potential was obtained. With the help of the ro-vibrational energy spectra obtained, we derived the expressions for the ro-vibrational partition function and other thermodynamic functions, via the Euler MacLaurin formula. Effects of temperature and upper bound vibration quantum number on the thermodynamic functions of anharmonic Eckart potential were discussed for some diatomic molecular systems. It has been established that unique critical temperatures of ro-vibrational entropy and ro-vibrational specific heat capacity exist for the selected diatomic molecules.</description><subject>Anharmonicity</subject><subject>Astronomy</subject><subject>Astrophysics and Astroparticles</subject><subject>Asymptotic methods</subject><subject>Diatomic molecules</subject><subject>Energy spectra</subject><subject>Harmonic functions</subject><subject>Iterative methods</subject><subject>Observations and Techniques</subject><subject>Partitions (mathematics)</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Schrodinger equation</subject><subject>Temperature effects</subject><subject>Thermodynamic properties</subject><subject>Upper bounds</subject><issn>0304-4289</issn><issn>0973-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OwzAUhS0EEqXwAkyWmAP-beIRVYUiFbEUMVque92mJHGwk4FOvANvyJPgEiQ2hqt7h--ce3QQuqTkmhKS30TKiOAZYfQwjGX7IzQiKudZTik9TjcnIhOsUKfoLMYdIVQJLkfoZbmFUJsKt8G3ELoSIvYOm2ZrQu2b0uKZfTWhw63voOnKRNZ-DRXuY9ls8KyvIHx9fD4auzB9KBvsfKj7ypyjE2eqCBe_e4ye72bL6TxbPN0_TG8XmeVUdRmY3ElOway4Is5IbsRKGOkKpxSxkFIquraMWj4hDqQojJTFxOXrQgAw5_gYXQ2-Kf9bD7HTO9-HJr3UTPJkMiGFTBQbKBt8jAGcbkNZm_CuKdGHAvVQoE7l6Z8C9T6J-CCKCW42EP6s_1F9AxCidh4</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Osobonye, G T</creator><creator>Adekanmbi, M</creator><creator>Ikot, A N</creator><creator>Okorie, U S</creator><creator>Rampho, G J</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5660-0289</orcidid></search><sort><creationdate>20210901</creationdate><title>Thermal properties of anharmonic Eckart potential model using Euler–MacLaurin formula</title><author>Osobonye, G T ; Adekanmbi, M ; Ikot, A N ; Okorie, U S ; Rampho, G J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-ea7f531eab390fa53a4b4a5f8f990ce01991dc21c360fe548a5586f7d84ee2ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anharmonicity</topic><topic>Astronomy</topic><topic>Astrophysics and Astroparticles</topic><topic>Asymptotic methods</topic><topic>Diatomic molecules</topic><topic>Energy spectra</topic><topic>Harmonic functions</topic><topic>Iterative methods</topic><topic>Observations and Techniques</topic><topic>Partitions (mathematics)</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Schrodinger equation</topic><topic>Temperature effects</topic><topic>Thermodynamic properties</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Osobonye, G T</creatorcontrib><creatorcontrib>Adekanmbi, M</creatorcontrib><creatorcontrib>Ikot, A N</creatorcontrib><creatorcontrib>Okorie, U S</creatorcontrib><creatorcontrib>Rampho, G J</creatorcontrib><collection>CrossRef</collection><jtitle>Pramāṇa</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Osobonye, G T</au><au>Adekanmbi, M</au><au>Ikot, A N</au><au>Okorie, U S</au><au>Rampho, G J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal properties of anharmonic Eckart potential model using Euler–MacLaurin formula</atitle><jtitle>Pramāṇa</jtitle><stitle>Pramana - J Phys</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>95</volume><issue>3</issue><artnum>98</artnum><issn>0304-4289</issn><eissn>0973-7111</eissn><abstract>By employing the asymptotic iteration method (AIM), we solved the three-dimensional time-independent Schrödinger equation with the anharmonic Eckart potential model. The expression for the eigensolution of the anharmonic Eckart potential was obtained. With the help of the ro-vibrational energy spectra obtained, we derived the expressions for the ro-vibrational partition function and other thermodynamic functions, via the Euler MacLaurin formula. Effects of temperature and upper bound vibration quantum number on the thermodynamic functions of anharmonic Eckart potential were discussed for some diatomic molecular systems. It has been established that unique critical temperatures of ro-vibrational entropy and ro-vibrational specific heat capacity exist for the selected diatomic molecules.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s12043-021-02122-z</doi><orcidid>https://orcid.org/0000-0002-5660-0289</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0304-4289
ispartof Pramāṇa, 2021-09, Vol.95 (3), Article 98
issn 0304-4289
0973-7111
language eng
recordid cdi_proquest_journals_2539906085
source Indian Academy of Sciences; Springer Nature
subjects Anharmonicity
Astronomy
Astrophysics and Astroparticles
Asymptotic methods
Diatomic molecules
Energy spectra
Harmonic functions
Iterative methods
Observations and Techniques
Partitions (mathematics)
Physics
Physics and Astronomy
Schrodinger equation
Temperature effects
Thermodynamic properties
Upper bounds
title Thermal properties of anharmonic Eckart potential model using Euler–MacLaurin formula
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T16%3A41%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20properties%20of%20anharmonic%20Eckart%20potential%20model%20using%20Euler%E2%80%93MacLaurin%20formula&rft.jtitle=Prama%CC%84n%CC%A3a&rft.au=Osobonye,%20G%20T&rft.date=2021-09-01&rft.volume=95&rft.issue=3&rft.artnum=98&rft.issn=0304-4289&rft.eissn=0973-7111&rft_id=info:doi/10.1007/s12043-021-02122-z&rft_dat=%3Cproquest_cross%3E2539906085%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-ea7f531eab390fa53a4b4a5f8f990ce01991dc21c360fe548a5586f7d84ee2ff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2539906085&rft_id=info:pmid/&rfr_iscdi=true