Loading…
Thermal properties of anharmonic Eckart potential model using Euler–MacLaurin formula
By employing the asymptotic iteration method (AIM), we solved the three-dimensional time-independent Schrödinger equation with the anharmonic Eckart potential model. The expression for the eigensolution of the anharmonic Eckart potential was obtained. With the help of the ro-vibrational energy spect...
Saved in:
Published in: | Pramāṇa 2021-09, Vol.95 (3), Article 98 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-ea7f531eab390fa53a4b4a5f8f990ce01991dc21c360fe548a5586f7d84ee2ff3 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-ea7f531eab390fa53a4b4a5f8f990ce01991dc21c360fe548a5586f7d84ee2ff3 |
container_end_page | |
container_issue | 3 |
container_start_page | |
container_title | Pramāṇa |
container_volume | 95 |
creator | Osobonye, G T Adekanmbi, M Ikot, A N Okorie, U S Rampho, G J |
description | By employing the asymptotic iteration method (AIM), we solved the three-dimensional time-independent Schrödinger equation with the anharmonic Eckart potential model. The expression for the eigensolution of the anharmonic Eckart potential was obtained. With the help of the ro-vibrational energy spectra obtained, we derived the expressions for the ro-vibrational partition function and other thermodynamic functions, via the Euler MacLaurin formula. Effects of temperature and upper bound vibration quantum number on the thermodynamic functions of anharmonic Eckart potential were discussed for some diatomic molecular systems. It has been established that unique critical temperatures of ro-vibrational entropy and ro-vibrational specific heat capacity exist for the selected diatomic molecules. |
doi_str_mv | 10.1007/s12043-021-02122-z |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2539906085</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2539906085</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-ea7f531eab390fa53a4b4a5f8f990ce01991dc21c360fe548a5586f7d84ee2ff3</originalsourceid><addsrcrecordid>eNp9kL1OwzAUhS0EEqXwAkyWmAP-beIRVYUiFbEUMVque92mJHGwk4FOvANvyJPgEiQ2hqt7h--ce3QQuqTkmhKS30TKiOAZYfQwjGX7IzQiKudZTik9TjcnIhOsUKfoLMYdIVQJLkfoZbmFUJsKt8G3ELoSIvYOm2ZrQu2b0uKZfTWhw63voOnKRNZ-DRXuY9ls8KyvIHx9fD4auzB9KBvsfKj7ypyjE2eqCBe_e4ye72bL6TxbPN0_TG8XmeVUdRmY3ElOway4Is5IbsRKGOkKpxSxkFIquraMWj4hDqQojJTFxOXrQgAw5_gYXQ2-Kf9bD7HTO9-HJr3UTPJkMiGFTBQbKBt8jAGcbkNZm_CuKdGHAvVQoE7l6Z8C9T6J-CCKCW42EP6s_1F9AxCidh4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2539906085</pqid></control><display><type>article</type><title>Thermal properties of anharmonic Eckart potential model using Euler–MacLaurin formula</title><source>Indian Academy of Sciences</source><source>Springer Nature</source><creator>Osobonye, G T ; Adekanmbi, M ; Ikot, A N ; Okorie, U S ; Rampho, G J</creator><creatorcontrib>Osobonye, G T ; Adekanmbi, M ; Ikot, A N ; Okorie, U S ; Rampho, G J</creatorcontrib><description>By employing the asymptotic iteration method (AIM), we solved the three-dimensional time-independent Schrödinger equation with the anharmonic Eckart potential model. The expression for the eigensolution of the anharmonic Eckart potential was obtained. With the help of the ro-vibrational energy spectra obtained, we derived the expressions for the ro-vibrational partition function and other thermodynamic functions, via the Euler MacLaurin formula. Effects of temperature and upper bound vibration quantum number on the thermodynamic functions of anharmonic Eckart potential were discussed for some diatomic molecular systems. It has been established that unique critical temperatures of ro-vibrational entropy and ro-vibrational specific heat capacity exist for the selected diatomic molecules.</description><identifier>ISSN: 0304-4289</identifier><identifier>EISSN: 0973-7111</identifier><identifier>DOI: 10.1007/s12043-021-02122-z</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Anharmonicity ; Astronomy ; Astrophysics and Astroparticles ; Asymptotic methods ; Diatomic molecules ; Energy spectra ; Harmonic functions ; Iterative methods ; Observations and Techniques ; Partitions (mathematics) ; Physics ; Physics and Astronomy ; Schrodinger equation ; Temperature effects ; Thermodynamic properties ; Upper bounds</subject><ispartof>Pramāṇa, 2021-09, Vol.95 (3), Article 98</ispartof><rights>Indian Academy of Sciences 2021</rights><rights>Indian Academy of Sciences 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-ea7f531eab390fa53a4b4a5f8f990ce01991dc21c360fe548a5586f7d84ee2ff3</citedby><cites>FETCH-LOGICAL-c319t-ea7f531eab390fa53a4b4a5f8f990ce01991dc21c360fe548a5586f7d84ee2ff3</cites><orcidid>0000-0002-5660-0289</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Osobonye, G T</creatorcontrib><creatorcontrib>Adekanmbi, M</creatorcontrib><creatorcontrib>Ikot, A N</creatorcontrib><creatorcontrib>Okorie, U S</creatorcontrib><creatorcontrib>Rampho, G J</creatorcontrib><title>Thermal properties of anharmonic Eckart potential model using Euler–MacLaurin formula</title><title>Pramāṇa</title><addtitle>Pramana - J Phys</addtitle><description>By employing the asymptotic iteration method (AIM), we solved the three-dimensional time-independent Schrödinger equation with the anharmonic Eckart potential model. The expression for the eigensolution of the anharmonic Eckart potential was obtained. With the help of the ro-vibrational energy spectra obtained, we derived the expressions for the ro-vibrational partition function and other thermodynamic functions, via the Euler MacLaurin formula. Effects of temperature and upper bound vibration quantum number on the thermodynamic functions of anharmonic Eckart potential were discussed for some diatomic molecular systems. It has been established that unique critical temperatures of ro-vibrational entropy and ro-vibrational specific heat capacity exist for the selected diatomic molecules.</description><subject>Anharmonicity</subject><subject>Astronomy</subject><subject>Astrophysics and Astroparticles</subject><subject>Asymptotic methods</subject><subject>Diatomic molecules</subject><subject>Energy spectra</subject><subject>Harmonic functions</subject><subject>Iterative methods</subject><subject>Observations and Techniques</subject><subject>Partitions (mathematics)</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Schrodinger equation</subject><subject>Temperature effects</subject><subject>Thermodynamic properties</subject><subject>Upper bounds</subject><issn>0304-4289</issn><issn>0973-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OwzAUhS0EEqXwAkyWmAP-beIRVYUiFbEUMVque92mJHGwk4FOvANvyJPgEiQ2hqt7h--ce3QQuqTkmhKS30TKiOAZYfQwjGX7IzQiKudZTik9TjcnIhOsUKfoLMYdIVQJLkfoZbmFUJsKt8G3ELoSIvYOm2ZrQu2b0uKZfTWhw63voOnKRNZ-DRXuY9ls8KyvIHx9fD4auzB9KBvsfKj7ypyjE2eqCBe_e4ye72bL6TxbPN0_TG8XmeVUdRmY3ElOway4Is5IbsRKGOkKpxSxkFIquraMWj4hDqQojJTFxOXrQgAw5_gYXQ2-Kf9bD7HTO9-HJr3UTPJkMiGFTBQbKBt8jAGcbkNZm_CuKdGHAvVQoE7l6Z8C9T6J-CCKCW42EP6s_1F9AxCidh4</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Osobonye, G T</creator><creator>Adekanmbi, M</creator><creator>Ikot, A N</creator><creator>Okorie, U S</creator><creator>Rampho, G J</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5660-0289</orcidid></search><sort><creationdate>20210901</creationdate><title>Thermal properties of anharmonic Eckart potential model using Euler–MacLaurin formula</title><author>Osobonye, G T ; Adekanmbi, M ; Ikot, A N ; Okorie, U S ; Rampho, G J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-ea7f531eab390fa53a4b4a5f8f990ce01991dc21c360fe548a5586f7d84ee2ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anharmonicity</topic><topic>Astronomy</topic><topic>Astrophysics and Astroparticles</topic><topic>Asymptotic methods</topic><topic>Diatomic molecules</topic><topic>Energy spectra</topic><topic>Harmonic functions</topic><topic>Iterative methods</topic><topic>Observations and Techniques</topic><topic>Partitions (mathematics)</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Schrodinger equation</topic><topic>Temperature effects</topic><topic>Thermodynamic properties</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Osobonye, G T</creatorcontrib><creatorcontrib>Adekanmbi, M</creatorcontrib><creatorcontrib>Ikot, A N</creatorcontrib><creatorcontrib>Okorie, U S</creatorcontrib><creatorcontrib>Rampho, G J</creatorcontrib><collection>CrossRef</collection><jtitle>Pramāṇa</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Osobonye, G T</au><au>Adekanmbi, M</au><au>Ikot, A N</au><au>Okorie, U S</au><au>Rampho, G J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal properties of anharmonic Eckart potential model using Euler–MacLaurin formula</atitle><jtitle>Pramāṇa</jtitle><stitle>Pramana - J Phys</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>95</volume><issue>3</issue><artnum>98</artnum><issn>0304-4289</issn><eissn>0973-7111</eissn><abstract>By employing the asymptotic iteration method (AIM), we solved the three-dimensional time-independent Schrödinger equation with the anharmonic Eckart potential model. The expression for the eigensolution of the anharmonic Eckart potential was obtained. With the help of the ro-vibrational energy spectra obtained, we derived the expressions for the ro-vibrational partition function and other thermodynamic functions, via the Euler MacLaurin formula. Effects of temperature and upper bound vibration quantum number on the thermodynamic functions of anharmonic Eckart potential were discussed for some diatomic molecular systems. It has been established that unique critical temperatures of ro-vibrational entropy and ro-vibrational specific heat capacity exist for the selected diatomic molecules.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s12043-021-02122-z</doi><orcidid>https://orcid.org/0000-0002-5660-0289</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-4289 |
ispartof | Pramāṇa, 2021-09, Vol.95 (3), Article 98 |
issn | 0304-4289 0973-7111 |
language | eng |
recordid | cdi_proquest_journals_2539906085 |
source | Indian Academy of Sciences; Springer Nature |
subjects | Anharmonicity Astronomy Astrophysics and Astroparticles Asymptotic methods Diatomic molecules Energy spectra Harmonic functions Iterative methods Observations and Techniques Partitions (mathematics) Physics Physics and Astronomy Schrodinger equation Temperature effects Thermodynamic properties Upper bounds |
title | Thermal properties of anharmonic Eckart potential model using Euler–MacLaurin formula |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T16%3A41%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20properties%20of%20anharmonic%20Eckart%20potential%20model%20using%20Euler%E2%80%93MacLaurin%20formula&rft.jtitle=Prama%CC%84n%CC%A3a&rft.au=Osobonye,%20G%20T&rft.date=2021-09-01&rft.volume=95&rft.issue=3&rft.artnum=98&rft.issn=0304-4289&rft.eissn=0973-7111&rft_id=info:doi/10.1007/s12043-021-02122-z&rft_dat=%3Cproquest_cross%3E2539906085%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-ea7f531eab390fa53a4b4a5f8f990ce01991dc21c360fe548a5586f7d84ee2ff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2539906085&rft_id=info:pmid/&rfr_iscdi=true |