Loading…

Recalibrating Rodinian rifting in the northwestern United States

A lack of precise age constraints for Neoproterozoic strata in the northwestern United States (Washington State), including the Buffalo Hump Formation (BHF), has resulted in conflicting interpretations of Rodinia amalgamation and breakup processes. Previous detrital zircon (DZ) studies identified a...

Full description

Saved in:
Bibliographic Details
Published in:Geology (Boulder) 2021-02, Vol.49 (6), p.617-622
Main Authors: Brennan, Daniel T, Li, Zheng-Xiang, Rankenburg, Kai, Evans, Noreen J, Link, Paul K, Nordsvan, Adam R, Kirkland, Christopher L, Mahoney, J. Brian, Johnson, Tim, McDonald, Bradley J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A lack of precise age constraints for Neoproterozoic strata in the northwestern United States (Washington State), including the Buffalo Hump Formation (BHF), has resulted in conflicting interpretations of Rodinia amalgamation and breakup processes. Previous detrital zircon (DZ) studies identified a youngest ca. 1.1 Ga DZ age population in the BHF, interpreted to reflect mostly first-cycle sourcing of unidentified but proximal magmatic rocks intruded during the amalgamation of Rodinia at ca. 1.0 Ga. Alternatively, the ca. 1.1 Ga DZ population has been suggested to represent a distal source with deposition occurring during the early phases of Rodinia rifting, more than 250 m.y. after zircon crystallization. We combined conventional laser-ablation split-stream analyses of U-Pb/Lu-Hf isotopes in zircon with a method of rapid (8 s per spot) U-Pb analysis to evaluate these opposing models. Our study of ∼2000 DZ grains from the BHF identified for the first time a minor (∼1%) yet significant ca. 760 Ma population, which constrains the maximum depositional age. This new geochronology implies that the BHF records early rift deposition during the breakup of Rodinia and correlates with sedimentary rocks found in other late Tonian basins of southwestern Laurentia.
ISSN:0091-7613
1943-2682
DOI:10.1130/G48435.1