Loading…
Robust Anomaly Detection Using Reconstructive Adversarial Network
Detecting abnormal service performance is significant for Internet-based service management and operation. Recent advances in anomaly detection methods prefer unsupervised learning algorithms since they can work without manually labelled data. However, existing unsupervised methods converge into sub...
Saved in:
Published in: | IEEE eTransactions on network and service management 2021-06, Vol.18 (2), p.1899-1912 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c293t-7f6836ebe1ec8de9fe2119e7f0d10b2c465b6df550b7a028d0897e57a9ad0f593 |
---|---|
cites | cdi_FETCH-LOGICAL-c293t-7f6836ebe1ec8de9fe2119e7f0d10b2c465b6df550b7a028d0897e57a9ad0f593 |
container_end_page | 1912 |
container_issue | 2 |
container_start_page | 1899 |
container_title | IEEE eTransactions on network and service management |
container_volume | 18 |
creator | Nie, Lihai Zhao, Laiping Li, Keqiu |
description | Detecting abnormal service performance is significant for Internet-based service management and operation. Recent advances in anomaly detection methods prefer unsupervised learning algorithms since they can work without manually labelled data. However, existing unsupervised methods converge into suboptimal solutions due to their heuristic-based objectives. Moreover, they frequently rely on the strong assumption that noise follows a Gaussian distribution, and their detection accuracy is also highly sensitive to threshold settings. To detect anomalies precisely and robustly, we present Adran , an unsupervised anomaly detection model that introduces adversarial learning into a reconstructive model, generating a reconstructive adversarial network with an anomaly detection-based training objective. It tolerates non-Gaussian noise by activating the discriminator with a non-smooth function. Our experimental results demonstrate that Adran achieves an improvement of \geq 32\% over the state-of-the-art methods in terms of F-score . Moreover, the robustness analysis demonstrates that it is reasonably easy and straightforward to set an appropriate threshold using Adran . |
doi_str_mv | 10.1109/TNSM.2021.3069225 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2539969842</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9388890</ieee_id><sourcerecordid>2539969842</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-7f6836ebe1ec8de9fe2119e7f0d10b2c465b6df550b7a028d0897e57a9ad0f593</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsFZ_gHgJeE7dj26ycwz1E7RCbc_LJpmV1DZbdzeV_ntTWsTTvAzPOwMPIdeMjhijcDeffryNOOVsJGgGnMsTMmAgeDqWIj_9l8_JRQhLSqViwAekmLmyCzEpWrc2q11yjxGr2Lg2WYSm_UxmWLk2RN_1yy0mRb1FH4xvzCqZYvxx_uuSnFmzCnh1nEOyeHyYT57T1_enl0nxmlYcRExzmymRYYkMK1UjWOSMAeaW1oyWvBpnssxqKyUtc0O5qqmCHGVuwNTUShBDcnu4u_Huu8MQ9dJ1vu1fai4FQAZqzHuKHajKuxA8Wr3xzdr4nWZU703pvSm9N6WPpvrOzaHTIOIfD0IpBVT8AvCcZR4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2539969842</pqid></control><display><type>article</type><title>Robust Anomaly Detection Using Reconstructive Adversarial Network</title><source>IEEE Xplore (Online service)</source><creator>Nie, Lihai ; Zhao, Laiping ; Li, Keqiu</creator><creatorcontrib>Nie, Lihai ; Zhao, Laiping ; Li, Keqiu</creatorcontrib><description>Detecting abnormal service performance is significant for Internet-based service management and operation. Recent advances in anomaly detection methods prefer unsupervised learning algorithms since they can work without manually labelled data. However, existing unsupervised methods converge into suboptimal solutions due to their heuristic-based objectives. Moreover, they frequently rely on the strong assumption that noise follows a Gaussian distribution, and their detection accuracy is also highly sensitive to threshold settings. To detect anomalies precisely and robustly, we present Adran , an unsupervised anomaly detection model that introduces adversarial learning into a reconstructive model, generating a reconstructive adversarial network with an anomaly detection-based training objective. It tolerates non-Gaussian noise by activating the discriminator with a non-smooth function. Our experimental results demonstrate that Adran achieves an improvement of <inline-formula> <tex-math notation="LaTeX">\geq 32\% </tex-math></inline-formula> over the state-of-the-art methods in terms of F-score . Moreover, the robustness analysis demonstrates that it is reasonably easy and straightforward to set an appropriate threshold using Adran .</description><identifier>ISSN: 1932-4537</identifier><identifier>EISSN: 1932-4537</identifier><identifier>DOI: 10.1109/TNSM.2021.3069225</identifier><identifier>CODEN: ITNSC4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Anomalies ; Anomaly detection ; Data models ; Gallium nitride ; Gaussian distribution ; Generative adversarial networks ; Key performance indicator ; Machine learning ; Noise tolerance ; Normal distribution ; performance diagnose ; Random noise ; reconstructive adversarial network ; Training</subject><ispartof>IEEE eTransactions on network and service management, 2021-06, Vol.18 (2), p.1899-1912</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-7f6836ebe1ec8de9fe2119e7f0d10b2c465b6df550b7a028d0897e57a9ad0f593</citedby><cites>FETCH-LOGICAL-c293t-7f6836ebe1ec8de9fe2119e7f0d10b2c465b6df550b7a028d0897e57a9ad0f593</cites><orcidid>0000-0001-8569-3739 ; 0000-0003-1967-2192</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9388890$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Nie, Lihai</creatorcontrib><creatorcontrib>Zhao, Laiping</creatorcontrib><creatorcontrib>Li, Keqiu</creatorcontrib><title>Robust Anomaly Detection Using Reconstructive Adversarial Network</title><title>IEEE eTransactions on network and service management</title><addtitle>T-NSM</addtitle><description>Detecting abnormal service performance is significant for Internet-based service management and operation. Recent advances in anomaly detection methods prefer unsupervised learning algorithms since they can work without manually labelled data. However, existing unsupervised methods converge into suboptimal solutions due to their heuristic-based objectives. Moreover, they frequently rely on the strong assumption that noise follows a Gaussian distribution, and their detection accuracy is also highly sensitive to threshold settings. To detect anomalies precisely and robustly, we present Adran , an unsupervised anomaly detection model that introduces adversarial learning into a reconstructive model, generating a reconstructive adversarial network with an anomaly detection-based training objective. It tolerates non-Gaussian noise by activating the discriminator with a non-smooth function. Our experimental results demonstrate that Adran achieves an improvement of <inline-formula> <tex-math notation="LaTeX">\geq 32\% </tex-math></inline-formula> over the state-of-the-art methods in terms of F-score . Moreover, the robustness analysis demonstrates that it is reasonably easy and straightforward to set an appropriate threshold using Adran .</description><subject>Algorithms</subject><subject>Anomalies</subject><subject>Anomaly detection</subject><subject>Data models</subject><subject>Gallium nitride</subject><subject>Gaussian distribution</subject><subject>Generative adversarial networks</subject><subject>Key performance indicator</subject><subject>Machine learning</subject><subject>Noise tolerance</subject><subject>Normal distribution</subject><subject>performance diagnose</subject><subject>Random noise</subject><subject>reconstructive adversarial network</subject><subject>Training</subject><issn>1932-4537</issn><issn>1932-4537</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpNkE1Lw0AQhhdRsFZ_gHgJeE7dj26ycwz1E7RCbc_LJpmV1DZbdzeV_ntTWsTTvAzPOwMPIdeMjhijcDeffryNOOVsJGgGnMsTMmAgeDqWIj_9l8_JRQhLSqViwAekmLmyCzEpWrc2q11yjxGr2Lg2WYSm_UxmWLk2RN_1yy0mRb1FH4xvzCqZYvxx_uuSnFmzCnh1nEOyeHyYT57T1_enl0nxmlYcRExzmymRYYkMK1UjWOSMAeaW1oyWvBpnssxqKyUtc0O5qqmCHGVuwNTUShBDcnu4u_Huu8MQ9dJ1vu1fai4FQAZqzHuKHajKuxA8Wr3xzdr4nWZU703pvSm9N6WPpvrOzaHTIOIfD0IpBVT8AvCcZR4</recordid><startdate>202106</startdate><enddate>202106</enddate><creator>Nie, Lihai</creator><creator>Zhao, Laiping</creator><creator>Li, Keqiu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8569-3739</orcidid><orcidid>https://orcid.org/0000-0003-1967-2192</orcidid></search><sort><creationdate>202106</creationdate><title>Robust Anomaly Detection Using Reconstructive Adversarial Network</title><author>Nie, Lihai ; Zhao, Laiping ; Li, Keqiu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-7f6836ebe1ec8de9fe2119e7f0d10b2c465b6df550b7a028d0897e57a9ad0f593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Anomalies</topic><topic>Anomaly detection</topic><topic>Data models</topic><topic>Gallium nitride</topic><topic>Gaussian distribution</topic><topic>Generative adversarial networks</topic><topic>Key performance indicator</topic><topic>Machine learning</topic><topic>Noise tolerance</topic><topic>Normal distribution</topic><topic>performance diagnose</topic><topic>Random noise</topic><topic>reconstructive adversarial network</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nie, Lihai</creatorcontrib><creatorcontrib>Zhao, Laiping</creatorcontrib><creatorcontrib>Li, Keqiu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><jtitle>IEEE eTransactions on network and service management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nie, Lihai</au><au>Zhao, Laiping</au><au>Li, Keqiu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Anomaly Detection Using Reconstructive Adversarial Network</atitle><jtitle>IEEE eTransactions on network and service management</jtitle><stitle>T-NSM</stitle><date>2021-06</date><risdate>2021</risdate><volume>18</volume><issue>2</issue><spage>1899</spage><epage>1912</epage><pages>1899-1912</pages><issn>1932-4537</issn><eissn>1932-4537</eissn><coden>ITNSC4</coden><abstract>Detecting abnormal service performance is significant for Internet-based service management and operation. Recent advances in anomaly detection methods prefer unsupervised learning algorithms since they can work without manually labelled data. However, existing unsupervised methods converge into suboptimal solutions due to their heuristic-based objectives. Moreover, they frequently rely on the strong assumption that noise follows a Gaussian distribution, and their detection accuracy is also highly sensitive to threshold settings. To detect anomalies precisely and robustly, we present Adran , an unsupervised anomaly detection model that introduces adversarial learning into a reconstructive model, generating a reconstructive adversarial network with an anomaly detection-based training objective. It tolerates non-Gaussian noise by activating the discriminator with a non-smooth function. Our experimental results demonstrate that Adran achieves an improvement of <inline-formula> <tex-math notation="LaTeX">\geq 32\% </tex-math></inline-formula> over the state-of-the-art methods in terms of F-score . Moreover, the robustness analysis demonstrates that it is reasonably easy and straightforward to set an appropriate threshold using Adran .</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNSM.2021.3069225</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8569-3739</orcidid><orcidid>https://orcid.org/0000-0003-1967-2192</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-4537 |
ispartof | IEEE eTransactions on network and service management, 2021-06, Vol.18 (2), p.1899-1912 |
issn | 1932-4537 1932-4537 |
language | eng |
recordid | cdi_proquest_journals_2539969842 |
source | IEEE Xplore (Online service) |
subjects | Algorithms Anomalies Anomaly detection Data models Gallium nitride Gaussian distribution Generative adversarial networks Key performance indicator Machine learning Noise tolerance Normal distribution performance diagnose Random noise reconstructive adversarial network Training |
title | Robust Anomaly Detection Using Reconstructive Adversarial Network |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T16%3A42%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Anomaly%20Detection%20Using%20Reconstructive%20Adversarial%20Network&rft.jtitle=IEEE%20eTransactions%20on%20network%20and%20service%20management&rft.au=Nie,%20Lihai&rft.date=2021-06&rft.volume=18&rft.issue=2&rft.spage=1899&rft.epage=1912&rft.pages=1899-1912&rft.issn=1932-4537&rft.eissn=1932-4537&rft.coden=ITNSC4&rft_id=info:doi/10.1109/TNSM.2021.3069225&rft_dat=%3Cproquest_ieee_%3E2539969842%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-7f6836ebe1ec8de9fe2119e7f0d10b2c465b6df550b7a028d0897e57a9ad0f593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2539969842&rft_id=info:pmid/&rft_ieee_id=9388890&rfr_iscdi=true |