Loading…

Robust Anomaly Detection Using Reconstructive Adversarial Network

Detecting abnormal service performance is significant for Internet-based service management and operation. Recent advances in anomaly detection methods prefer unsupervised learning algorithms since they can work without manually labelled data. However, existing unsupervised methods converge into sub...

Full description

Saved in:
Bibliographic Details
Published in:IEEE eTransactions on network and service management 2021-06, Vol.18 (2), p.1899-1912
Main Authors: Nie, Lihai, Zhao, Laiping, Li, Keqiu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c293t-7f6836ebe1ec8de9fe2119e7f0d10b2c465b6df550b7a028d0897e57a9ad0f593
cites cdi_FETCH-LOGICAL-c293t-7f6836ebe1ec8de9fe2119e7f0d10b2c465b6df550b7a028d0897e57a9ad0f593
container_end_page 1912
container_issue 2
container_start_page 1899
container_title IEEE eTransactions on network and service management
container_volume 18
creator Nie, Lihai
Zhao, Laiping
Li, Keqiu
description Detecting abnormal service performance is significant for Internet-based service management and operation. Recent advances in anomaly detection methods prefer unsupervised learning algorithms since they can work without manually labelled data. However, existing unsupervised methods converge into suboptimal solutions due to their heuristic-based objectives. Moreover, they frequently rely on the strong assumption that noise follows a Gaussian distribution, and their detection accuracy is also highly sensitive to threshold settings. To detect anomalies precisely and robustly, we present Adran , an unsupervised anomaly detection model that introduces adversarial learning into a reconstructive model, generating a reconstructive adversarial network with an anomaly detection-based training objective. It tolerates non-Gaussian noise by activating the discriminator with a non-smooth function. Our experimental results demonstrate that Adran achieves an improvement of \geq 32\% over the state-of-the-art methods in terms of F-score . Moreover, the robustness analysis demonstrates that it is reasonably easy and straightforward to set an appropriate threshold using Adran .
doi_str_mv 10.1109/TNSM.2021.3069225
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2539969842</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9388890</ieee_id><sourcerecordid>2539969842</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-7f6836ebe1ec8de9fe2119e7f0d10b2c465b6df550b7a028d0897e57a9ad0f593</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsFZ_gHgJeE7dj26ycwz1E7RCbc_LJpmV1DZbdzeV_ntTWsTTvAzPOwMPIdeMjhijcDeffryNOOVsJGgGnMsTMmAgeDqWIj_9l8_JRQhLSqViwAekmLmyCzEpWrc2q11yjxGr2Lg2WYSm_UxmWLk2RN_1yy0mRb1FH4xvzCqZYvxx_uuSnFmzCnh1nEOyeHyYT57T1_enl0nxmlYcRExzmymRYYkMK1UjWOSMAeaW1oyWvBpnssxqKyUtc0O5qqmCHGVuwNTUShBDcnu4u_Huu8MQ9dJ1vu1fai4FQAZqzHuKHajKuxA8Wr3xzdr4nWZU703pvSm9N6WPpvrOzaHTIOIfD0IpBVT8AvCcZR4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2539969842</pqid></control><display><type>article</type><title>Robust Anomaly Detection Using Reconstructive Adversarial Network</title><source>IEEE Xplore (Online service)</source><creator>Nie, Lihai ; Zhao, Laiping ; Li, Keqiu</creator><creatorcontrib>Nie, Lihai ; Zhao, Laiping ; Li, Keqiu</creatorcontrib><description>Detecting abnormal service performance is significant for Internet-based service management and operation. Recent advances in anomaly detection methods prefer unsupervised learning algorithms since they can work without manually labelled data. However, existing unsupervised methods converge into suboptimal solutions due to their heuristic-based objectives. Moreover, they frequently rely on the strong assumption that noise follows a Gaussian distribution, and their detection accuracy is also highly sensitive to threshold settings. To detect anomalies precisely and robustly, we present Adran , an unsupervised anomaly detection model that introduces adversarial learning into a reconstructive model, generating a reconstructive adversarial network with an anomaly detection-based training objective. It tolerates non-Gaussian noise by activating the discriminator with a non-smooth function. Our experimental results demonstrate that Adran achieves an improvement of &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\geq 32\% &lt;/tex-math&gt;&lt;/inline-formula&gt; over the state-of-the-art methods in terms of F-score . Moreover, the robustness analysis demonstrates that it is reasonably easy and straightforward to set an appropriate threshold using Adran .</description><identifier>ISSN: 1932-4537</identifier><identifier>EISSN: 1932-4537</identifier><identifier>DOI: 10.1109/TNSM.2021.3069225</identifier><identifier>CODEN: ITNSC4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Anomalies ; Anomaly detection ; Data models ; Gallium nitride ; Gaussian distribution ; Generative adversarial networks ; Key performance indicator ; Machine learning ; Noise tolerance ; Normal distribution ; performance diagnose ; Random noise ; reconstructive adversarial network ; Training</subject><ispartof>IEEE eTransactions on network and service management, 2021-06, Vol.18 (2), p.1899-1912</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-7f6836ebe1ec8de9fe2119e7f0d10b2c465b6df550b7a028d0897e57a9ad0f593</citedby><cites>FETCH-LOGICAL-c293t-7f6836ebe1ec8de9fe2119e7f0d10b2c465b6df550b7a028d0897e57a9ad0f593</cites><orcidid>0000-0001-8569-3739 ; 0000-0003-1967-2192</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9388890$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Nie, Lihai</creatorcontrib><creatorcontrib>Zhao, Laiping</creatorcontrib><creatorcontrib>Li, Keqiu</creatorcontrib><title>Robust Anomaly Detection Using Reconstructive Adversarial Network</title><title>IEEE eTransactions on network and service management</title><addtitle>T-NSM</addtitle><description>Detecting abnormal service performance is significant for Internet-based service management and operation. Recent advances in anomaly detection methods prefer unsupervised learning algorithms since they can work without manually labelled data. However, existing unsupervised methods converge into suboptimal solutions due to their heuristic-based objectives. Moreover, they frequently rely on the strong assumption that noise follows a Gaussian distribution, and their detection accuracy is also highly sensitive to threshold settings. To detect anomalies precisely and robustly, we present Adran , an unsupervised anomaly detection model that introduces adversarial learning into a reconstructive model, generating a reconstructive adversarial network with an anomaly detection-based training objective. It tolerates non-Gaussian noise by activating the discriminator with a non-smooth function. Our experimental results demonstrate that Adran achieves an improvement of &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\geq 32\% &lt;/tex-math&gt;&lt;/inline-formula&gt; over the state-of-the-art methods in terms of F-score . Moreover, the robustness analysis demonstrates that it is reasonably easy and straightforward to set an appropriate threshold using Adran .</description><subject>Algorithms</subject><subject>Anomalies</subject><subject>Anomaly detection</subject><subject>Data models</subject><subject>Gallium nitride</subject><subject>Gaussian distribution</subject><subject>Generative adversarial networks</subject><subject>Key performance indicator</subject><subject>Machine learning</subject><subject>Noise tolerance</subject><subject>Normal distribution</subject><subject>performance diagnose</subject><subject>Random noise</subject><subject>reconstructive adversarial network</subject><subject>Training</subject><issn>1932-4537</issn><issn>1932-4537</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpNkE1Lw0AQhhdRsFZ_gHgJeE7dj26ycwz1E7RCbc_LJpmV1DZbdzeV_ntTWsTTvAzPOwMPIdeMjhijcDeffryNOOVsJGgGnMsTMmAgeDqWIj_9l8_JRQhLSqViwAekmLmyCzEpWrc2q11yjxGr2Lg2WYSm_UxmWLk2RN_1yy0mRb1FH4xvzCqZYvxx_uuSnFmzCnh1nEOyeHyYT57T1_enl0nxmlYcRExzmymRYYkMK1UjWOSMAeaW1oyWvBpnssxqKyUtc0O5qqmCHGVuwNTUShBDcnu4u_Huu8MQ9dJ1vu1fai4FQAZqzHuKHajKuxA8Wr3xzdr4nWZU703pvSm9N6WPpvrOzaHTIOIfD0IpBVT8AvCcZR4</recordid><startdate>202106</startdate><enddate>202106</enddate><creator>Nie, Lihai</creator><creator>Zhao, Laiping</creator><creator>Li, Keqiu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8569-3739</orcidid><orcidid>https://orcid.org/0000-0003-1967-2192</orcidid></search><sort><creationdate>202106</creationdate><title>Robust Anomaly Detection Using Reconstructive Adversarial Network</title><author>Nie, Lihai ; Zhao, Laiping ; Li, Keqiu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-7f6836ebe1ec8de9fe2119e7f0d10b2c465b6df550b7a028d0897e57a9ad0f593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Anomalies</topic><topic>Anomaly detection</topic><topic>Data models</topic><topic>Gallium nitride</topic><topic>Gaussian distribution</topic><topic>Generative adversarial networks</topic><topic>Key performance indicator</topic><topic>Machine learning</topic><topic>Noise tolerance</topic><topic>Normal distribution</topic><topic>performance diagnose</topic><topic>Random noise</topic><topic>reconstructive adversarial network</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nie, Lihai</creatorcontrib><creatorcontrib>Zhao, Laiping</creatorcontrib><creatorcontrib>Li, Keqiu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><jtitle>IEEE eTransactions on network and service management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nie, Lihai</au><au>Zhao, Laiping</au><au>Li, Keqiu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Anomaly Detection Using Reconstructive Adversarial Network</atitle><jtitle>IEEE eTransactions on network and service management</jtitle><stitle>T-NSM</stitle><date>2021-06</date><risdate>2021</risdate><volume>18</volume><issue>2</issue><spage>1899</spage><epage>1912</epage><pages>1899-1912</pages><issn>1932-4537</issn><eissn>1932-4537</eissn><coden>ITNSC4</coden><abstract>Detecting abnormal service performance is significant for Internet-based service management and operation. Recent advances in anomaly detection methods prefer unsupervised learning algorithms since they can work without manually labelled data. However, existing unsupervised methods converge into suboptimal solutions due to their heuristic-based objectives. Moreover, they frequently rely on the strong assumption that noise follows a Gaussian distribution, and their detection accuracy is also highly sensitive to threshold settings. To detect anomalies precisely and robustly, we present Adran , an unsupervised anomaly detection model that introduces adversarial learning into a reconstructive model, generating a reconstructive adversarial network with an anomaly detection-based training objective. It tolerates non-Gaussian noise by activating the discriminator with a non-smooth function. Our experimental results demonstrate that Adran achieves an improvement of &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\geq 32\% &lt;/tex-math&gt;&lt;/inline-formula&gt; over the state-of-the-art methods in terms of F-score . Moreover, the robustness analysis demonstrates that it is reasonably easy and straightforward to set an appropriate threshold using Adran .</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNSM.2021.3069225</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8569-3739</orcidid><orcidid>https://orcid.org/0000-0003-1967-2192</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1932-4537
ispartof IEEE eTransactions on network and service management, 2021-06, Vol.18 (2), p.1899-1912
issn 1932-4537
1932-4537
language eng
recordid cdi_proquest_journals_2539969842
source IEEE Xplore (Online service)
subjects Algorithms
Anomalies
Anomaly detection
Data models
Gallium nitride
Gaussian distribution
Generative adversarial networks
Key performance indicator
Machine learning
Noise tolerance
Normal distribution
performance diagnose
Random noise
reconstructive adversarial network
Training
title Robust Anomaly Detection Using Reconstructive Adversarial Network
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T16%3A42%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Anomaly%20Detection%20Using%20Reconstructive%20Adversarial%20Network&rft.jtitle=IEEE%20eTransactions%20on%20network%20and%20service%20management&rft.au=Nie,%20Lihai&rft.date=2021-06&rft.volume=18&rft.issue=2&rft.spage=1899&rft.epage=1912&rft.pages=1899-1912&rft.issn=1932-4537&rft.eissn=1932-4537&rft.coden=ITNSC4&rft_id=info:doi/10.1109/TNSM.2021.3069225&rft_dat=%3Cproquest_ieee_%3E2539969842%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-7f6836ebe1ec8de9fe2119e7f0d10b2c465b6df550b7a028d0897e57a9ad0f593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2539969842&rft_id=info:pmid/&rft_ieee_id=9388890&rfr_iscdi=true