Loading…

Strength and Durability of Cement-Treated Lateritic Soil

The transportation infrastructure, including low-volume roads in some regions, needs to be constructed on weak ground, implying the necessity of soil stabilization. Untreated and cement-treated lateritic soil for low-volume road suitability were studied based on Malaysian standards. A series of unco...

Full description

Saved in:
Bibliographic Details
Published in:Sustainability 2021-06, Vol.13 (11), p.6430
Main Authors: Wahab, Norshakila Abdul, Roshan, Mohammad Jawed, Rashid, Ahmad Safuan A., Hezmi, Muhammad Azril, Jusoh, Siti Norafida, Nik Norsyahariati, Nik Daud, Tamassoki, Sakina
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The transportation infrastructure, including low-volume roads in some regions, needs to be constructed on weak ground, implying the necessity of soil stabilization. Untreated and cement-treated lateritic soil for low-volume road suitability were studied based on Malaysian standards. A series of unconfined compressive strength (UCS) tests was performed for four cement doses (3%, 6%, 9%, 12%) for different curing times. According to Malaysian standards, the study suggested 6% cement and 7 days curing time as the optimum cement dosage and curing time, respectively, based on their 0.8 MPa UCS values. The durability test indicated that the specimens treated with 3% cement collapsed directly upon soaking in water. Although the UCS of 6% cement-treated specimens decreased against wetting–drying (WD) cycles, the minimum threshold based on Malaysian standards was still maintained against 15 WD cycles. On the contrary, the durability of specimens treated with 9% and 12% cement represented a UCS increase against WD cycles. FESEM results indicated the formation of calcium aluminate hydrate (CAH), calcium silicate hydrate (CSH), and calcium aluminosilicate hydrate (CASH) as well as shrinking of pore size when untreated soil was mixed with cement. The formation of gels (CAH, CSH, CASH) and decreasing pore size could be clarified by EDX results in which the increase in cement content increased calcium.
ISSN:2071-1050
2071-1050
DOI:10.3390/su13116430