Loading…
Ramsey imaging of optical traps
Mapping the potential landscape with high spatial resolution is crucial for quantum technologies based on ultracold atoms. Yet, imaging optical dipole traps is challenging because purely optical methods, commonly used to profile laser beams in free space, are not applicable in vacuum. In this work,...
Saved in:
Published in: | arXiv.org 2021-06 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Ramola, Gautam Winkelmann, Richard Chandrashekara, Karthik Alt, Wolfgang Xu, Peng Meschede, Dieter Alberti, Andrea |
description | Mapping the potential landscape with high spatial resolution is crucial for quantum technologies based on ultracold atoms. Yet, imaging optical dipole traps is challenging because purely optical methods, commonly used to profile laser beams in free space, are not applicable in vacuum. In this work, we demonstrate precise in-situ imaging of optical dipole traps by probing a hyperfine transition with Ramsey interferometry. Thereby, we obtain an absolute map of the potential landscape with micrometer resolution and shot-noise-limited spectral precision. The idea of the technique is to control the polarization ellipticity of the trap laser beam to induce a differential light shift proportional to the trap potential. By studying the response to polarization ellipticity, we uncover a small but significant nonlinearity in addition to a dominant linear behavior, which is explained by the geometric distribution of the atomic ensemble. Our technique for imaging of optical traps can find wide application in quantum technologies based on ultracold atoms, as it applies to multiple atomic species and is not limited to a particular wavelength or trap geometry. |
doi_str_mv | 10.48550/arxiv.2106.05871 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2540004605</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2540004605</sourcerecordid><originalsourceid>FETCH-LOGICAL-a525-1bec364ac646c9236fed4cd0a11e6789c3344307e3186920e24dda16133871dd3</originalsourceid><addsrcrecordid>eNotjstKw0AUQAdBaKn9gK4MuE68r5kkSym-oCBI9-U6MykpbRMzqejfG9DV2Z1zjFkhFFJZC_c6fLdfBSG4AmxV4pWZEzPmlRDNzDKlAwCQK8lanpvbdz2l-JO1J923533WNVnXj63XYzYO2qcbc93oMcXlPxdm-_S4Xb_km7fn1_XDJldLNseP6NmJeifO18SuiUF8AEWMrqxqzyzCUEbGytUEkSQERYfM02EIvDB3f9p-6D4vMY27Q3cZzlNxR1amYXFg-ReWXT2F</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2540004605</pqid></control><display><type>article</type><title>Ramsey imaging of optical traps</title><source>Publicly Available Content Database</source><creator>Ramola, Gautam ; Winkelmann, Richard ; Chandrashekara, Karthik ; Alt, Wolfgang ; Xu, Peng ; Meschede, Dieter ; Alberti, Andrea</creator><creatorcontrib>Ramola, Gautam ; Winkelmann, Richard ; Chandrashekara, Karthik ; Alt, Wolfgang ; Xu, Peng ; Meschede, Dieter ; Alberti, Andrea</creatorcontrib><description>Mapping the potential landscape with high spatial resolution is crucial for quantum technologies based on ultracold atoms. Yet, imaging optical dipole traps is challenging because purely optical methods, commonly used to profile laser beams in free space, are not applicable in vacuum. In this work, we demonstrate precise in-situ imaging of optical dipole traps by probing a hyperfine transition with Ramsey interferometry. Thereby, we obtain an absolute map of the potential landscape with micrometer resolution and shot-noise-limited spectral precision. The idea of the technique is to control the polarization ellipticity of the trap laser beam to induce a differential light shift proportional to the trap potential. By studying the response to polarization ellipticity, we uncover a small but significant nonlinearity in addition to a dominant linear behavior, which is explained by the geometric distribution of the atomic ensemble. Our technique for imaging of optical traps can find wide application in quantum technologies based on ultracold atoms, as it applies to multiple atomic species and is not limited to a particular wavelength or trap geometry.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2106.05871</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Dipoles ; Ellipticity ; Imaging ; Laser beams ; Optical traps ; Optics ; Polarization ; Spatial resolution</subject><ispartof>arXiv.org, 2021-06</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2540004605?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,27902,36989,44566</link.rule.ids></links><search><creatorcontrib>Ramola, Gautam</creatorcontrib><creatorcontrib>Winkelmann, Richard</creatorcontrib><creatorcontrib>Chandrashekara, Karthik</creatorcontrib><creatorcontrib>Alt, Wolfgang</creatorcontrib><creatorcontrib>Xu, Peng</creatorcontrib><creatorcontrib>Meschede, Dieter</creatorcontrib><creatorcontrib>Alberti, Andrea</creatorcontrib><title>Ramsey imaging of optical traps</title><title>arXiv.org</title><description>Mapping the potential landscape with high spatial resolution is crucial for quantum technologies based on ultracold atoms. Yet, imaging optical dipole traps is challenging because purely optical methods, commonly used to profile laser beams in free space, are not applicable in vacuum. In this work, we demonstrate precise in-situ imaging of optical dipole traps by probing a hyperfine transition with Ramsey interferometry. Thereby, we obtain an absolute map of the potential landscape with micrometer resolution and shot-noise-limited spectral precision. The idea of the technique is to control the polarization ellipticity of the trap laser beam to induce a differential light shift proportional to the trap potential. By studying the response to polarization ellipticity, we uncover a small but significant nonlinearity in addition to a dominant linear behavior, which is explained by the geometric distribution of the atomic ensemble. Our technique for imaging of optical traps can find wide application in quantum technologies based on ultracold atoms, as it applies to multiple atomic species and is not limited to a particular wavelength or trap geometry.</description><subject>Dipoles</subject><subject>Ellipticity</subject><subject>Imaging</subject><subject>Laser beams</subject><subject>Optical traps</subject><subject>Optics</subject><subject>Polarization</subject><subject>Spatial resolution</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjstKw0AUQAdBaKn9gK4MuE68r5kkSym-oCBI9-U6MykpbRMzqejfG9DV2Z1zjFkhFFJZC_c6fLdfBSG4AmxV4pWZEzPmlRDNzDKlAwCQK8lanpvbdz2l-JO1J923533WNVnXj63XYzYO2qcbc93oMcXlPxdm-_S4Xb_km7fn1_XDJldLNseP6NmJeifO18SuiUF8AEWMrqxqzyzCUEbGytUEkSQERYfM02EIvDB3f9p-6D4vMY27Q3cZzlNxR1amYXFg-ReWXT2F</recordid><startdate>20210610</startdate><enddate>20210610</enddate><creator>Ramola, Gautam</creator><creator>Winkelmann, Richard</creator><creator>Chandrashekara, Karthik</creator><creator>Alt, Wolfgang</creator><creator>Xu, Peng</creator><creator>Meschede, Dieter</creator><creator>Alberti, Andrea</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210610</creationdate><title>Ramsey imaging of optical traps</title><author>Ramola, Gautam ; Winkelmann, Richard ; Chandrashekara, Karthik ; Alt, Wolfgang ; Xu, Peng ; Meschede, Dieter ; Alberti, Andrea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a525-1bec364ac646c9236fed4cd0a11e6789c3344307e3186920e24dda16133871dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Dipoles</topic><topic>Ellipticity</topic><topic>Imaging</topic><topic>Laser beams</topic><topic>Optical traps</topic><topic>Optics</topic><topic>Polarization</topic><topic>Spatial resolution</topic><toplevel>online_resources</toplevel><creatorcontrib>Ramola, Gautam</creatorcontrib><creatorcontrib>Winkelmann, Richard</creatorcontrib><creatorcontrib>Chandrashekara, Karthik</creatorcontrib><creatorcontrib>Alt, Wolfgang</creatorcontrib><creatorcontrib>Xu, Peng</creatorcontrib><creatorcontrib>Meschede, Dieter</creatorcontrib><creatorcontrib>Alberti, Andrea</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramola, Gautam</au><au>Winkelmann, Richard</au><au>Chandrashekara, Karthik</au><au>Alt, Wolfgang</au><au>Xu, Peng</au><au>Meschede, Dieter</au><au>Alberti, Andrea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ramsey imaging of optical traps</atitle><jtitle>arXiv.org</jtitle><date>2021-06-10</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>Mapping the potential landscape with high spatial resolution is crucial for quantum technologies based on ultracold atoms. Yet, imaging optical dipole traps is challenging because purely optical methods, commonly used to profile laser beams in free space, are not applicable in vacuum. In this work, we demonstrate precise in-situ imaging of optical dipole traps by probing a hyperfine transition with Ramsey interferometry. Thereby, we obtain an absolute map of the potential landscape with micrometer resolution and shot-noise-limited spectral precision. The idea of the technique is to control the polarization ellipticity of the trap laser beam to induce a differential light shift proportional to the trap potential. By studying the response to polarization ellipticity, we uncover a small but significant nonlinearity in addition to a dominant linear behavior, which is explained by the geometric distribution of the atomic ensemble. Our technique for imaging of optical traps can find wide application in quantum technologies based on ultracold atoms, as it applies to multiple atomic species and is not limited to a particular wavelength or trap geometry.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2106.05871</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2540004605 |
source | Publicly Available Content Database |
subjects | Dipoles Ellipticity Imaging Laser beams Optical traps Optics Polarization Spatial resolution |
title | Ramsey imaging of optical traps |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T23%3A27%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ramsey%20imaging%20of%20optical%20traps&rft.jtitle=arXiv.org&rft.au=Ramola,%20Gautam&rft.date=2021-06-10&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2106.05871&rft_dat=%3Cproquest%3E2540004605%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a525-1bec364ac646c9236fed4cd0a11e6789c3344307e3186920e24dda16133871dd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2540004605&rft_id=info:pmid/&rfr_iscdi=true |