Loading…
Extractions of travelling wave solutions of (2 + 1)-dimensional Boiti–Leon–Pempinelli system via (Gʹ/G, 1/G)-expansion method
In this study, analytical solutions are presented for the (2 + 1)-dimensional Boiti–Leon–Pempinelli (BLP) system, which has an important physical property in hydrodynamics. The solutions of the BLP system used to describe the evolution of water waves are examined with the help of the ( G ʹ/ G , 1/ G...
Saved in:
Published in: | Optical and quantum electronics 2021-06, Vol.53 (6), Article 299 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-e9a33bb20b2168e15bc69f452994eb6a975ccef5f59cf5d4192a1cc1b2580c3e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-e9a33bb20b2168e15bc69f452994eb6a975ccef5f59cf5d4192a1cc1b2580c3e3 |
container_end_page | |
container_issue | 6 |
container_start_page | |
container_title | Optical and quantum electronics |
container_volume | 53 |
creator | Duran, Serbay |
description | In this study, analytical solutions are presented for the (2 + 1)-dimensional Boiti–Leon–Pempinelli (BLP) system, which has an important physical property in hydrodynamics. The solutions of the BLP system used to describe the evolution of water waves are examined with the help of the (
G
ʹ/
G
, 1/
G
)-expansion method. These traveling wave solutions are classified as hyperbolic, trigonometric and rational. The graphics of solitary wave solutions obtained with the help of special values given to the parameters in these traveling wave solutions are presented as 3D, 2D and contour with the help of a computer program. In the results and discussion section, the advantages and disadvantages of the method for the BLP system compared to other analytical methods are discussed. Also, the behavior of the wave is examined with the help of simulations, taking into account the velocity parameter for solitary wave solutions. |
doi_str_mv | 10.1007/s11082-021-02940-w |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2540356056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2540356056</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-e9a33bb20b2168e15bc69f452994eb6a975ccef5f59cf5d4192a1cc1b2580c3e3</originalsourceid><addsrcrecordid>eNp9UMtKxDAUDaLg-PgBVwE3Dhrn3rTpNEsddBQGdKHgLqSZVCttMzadhztXgmu_xl_wM_wSoyO6c3E593IecA8hOwiHCNDveURIOQOOYWQMbL5COij6nKXYv1klHYggYalEuU42vL8HgCQW0CHPJ4u20aYtXO2py2k4ZrYsi_qWzsNGvSunv-Qe_3h62Q-DXTYuKlv7wOiSHruiLT6eXkfW1QEubTUp6q8U6h99ays6KzTdG76_9YYHFHvDLrOLif5208q2d268RdZyXXq7_YOb5Pr05GpwxkYXw_PB0YiZCGXLrNRRlGUcMo5JalFkJpF5LLiUsc0SLfvCGJuLXEiTi3GMkms0BjMuUjCRjTbJ7jJ30riHqfWtunfTJvzgFRcxRCIBkQQVX6pM47xvbK4mTVHp5lEhqK--1bJvFfpW332reTBFS5MP4vrWNn_R_7g-AdwWiKo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2540356056</pqid></control><display><type>article</type><title>Extractions of travelling wave solutions of (2 + 1)-dimensional Boiti–Leon–Pempinelli system via (Gʹ/G, 1/G)-expansion method</title><source>Springer Nature</source><creator>Duran, Serbay</creator><creatorcontrib>Duran, Serbay</creatorcontrib><description>In this study, analytical solutions are presented for the (2 + 1)-dimensional Boiti–Leon–Pempinelli (BLP) system, which has an important physical property in hydrodynamics. The solutions of the BLP system used to describe the evolution of water waves are examined with the help of the (
G
ʹ/
G
, 1/
G
)-expansion method. These traveling wave solutions are classified as hyperbolic, trigonometric and rational. The graphics of solitary wave solutions obtained with the help of special values given to the parameters in these traveling wave solutions are presented as 3D, 2D and contour with the help of a computer program. In the results and discussion section, the advantages and disadvantages of the method for the BLP system compared to other analytical methods are discussed. Also, the behavior of the wave is examined with the help of simulations, taking into account the velocity parameter for solitary wave solutions.</description><identifier>ISSN: 0306-8919</identifier><identifier>EISSN: 1572-817X</identifier><identifier>DOI: 10.1007/s11082-021-02940-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Computational fluid dynamics ; Computer Communication Networks ; Electrical Engineering ; Exact solutions ; Fluid flow ; Hydrodynamics ; Lasers ; Optical Devices ; Optics ; Parameters ; Photonics ; Physics ; Physics and Astronomy ; Solitary waves ; Traveling waves ; Water waves</subject><ispartof>Optical and quantum electronics, 2021-06, Vol.53 (6), Article 299</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-e9a33bb20b2168e15bc69f452994eb6a975ccef5f59cf5d4192a1cc1b2580c3e3</citedby><cites>FETCH-LOGICAL-c319t-e9a33bb20b2168e15bc69f452994eb6a975ccef5f59cf5d4192a1cc1b2580c3e3</cites><orcidid>0000-0002-3585-8061</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Duran, Serbay</creatorcontrib><title>Extractions of travelling wave solutions of (2 + 1)-dimensional Boiti–Leon–Pempinelli system via (Gʹ/G, 1/G)-expansion method</title><title>Optical and quantum electronics</title><addtitle>Opt Quant Electron</addtitle><description>In this study, analytical solutions are presented for the (2 + 1)-dimensional Boiti–Leon–Pempinelli (BLP) system, which has an important physical property in hydrodynamics. The solutions of the BLP system used to describe the evolution of water waves are examined with the help of the (
G
ʹ/
G
, 1/
G
)-expansion method. These traveling wave solutions are classified as hyperbolic, trigonometric and rational. The graphics of solitary wave solutions obtained with the help of special values given to the parameters in these traveling wave solutions are presented as 3D, 2D and contour with the help of a computer program. In the results and discussion section, the advantages and disadvantages of the method for the BLP system compared to other analytical methods are discussed. Also, the behavior of the wave is examined with the help of simulations, taking into account the velocity parameter for solitary wave solutions.</description><subject>Characterization and Evaluation of Materials</subject><subject>Computational fluid dynamics</subject><subject>Computer Communication Networks</subject><subject>Electrical Engineering</subject><subject>Exact solutions</subject><subject>Fluid flow</subject><subject>Hydrodynamics</subject><subject>Lasers</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Parameters</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Solitary waves</subject><subject>Traveling waves</subject><subject>Water waves</subject><issn>0306-8919</issn><issn>1572-817X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UMtKxDAUDaLg-PgBVwE3Dhrn3rTpNEsddBQGdKHgLqSZVCttMzadhztXgmu_xl_wM_wSoyO6c3E593IecA8hOwiHCNDveURIOQOOYWQMbL5COij6nKXYv1klHYggYalEuU42vL8HgCQW0CHPJ4u20aYtXO2py2k4ZrYsi_qWzsNGvSunv-Qe_3h62Q-DXTYuKlv7wOiSHruiLT6eXkfW1QEubTUp6q8U6h99ays6KzTdG76_9YYHFHvDLrOLif5208q2d268RdZyXXq7_YOb5Pr05GpwxkYXw_PB0YiZCGXLrNRRlGUcMo5JalFkJpF5LLiUsc0SLfvCGJuLXEiTi3GMkms0BjMuUjCRjTbJ7jJ30riHqfWtunfTJvzgFRcxRCIBkQQVX6pM47xvbK4mTVHp5lEhqK--1bJvFfpW332reTBFS5MP4vrWNn_R_7g-AdwWiKo</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Duran, Serbay</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3585-8061</orcidid></search><sort><creationdate>20210601</creationdate><title>Extractions of travelling wave solutions of (2 + 1)-dimensional Boiti–Leon–Pempinelli system via (Gʹ/G, 1/G)-expansion method</title><author>Duran, Serbay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-e9a33bb20b2168e15bc69f452994eb6a975ccef5f59cf5d4192a1cc1b2580c3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Computational fluid dynamics</topic><topic>Computer Communication Networks</topic><topic>Electrical Engineering</topic><topic>Exact solutions</topic><topic>Fluid flow</topic><topic>Hydrodynamics</topic><topic>Lasers</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Parameters</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Solitary waves</topic><topic>Traveling waves</topic><topic>Water waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duran, Serbay</creatorcontrib><collection>CrossRef</collection><jtitle>Optical and quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duran, Serbay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extractions of travelling wave solutions of (2 + 1)-dimensional Boiti–Leon–Pempinelli system via (Gʹ/G, 1/G)-expansion method</atitle><jtitle>Optical and quantum electronics</jtitle><stitle>Opt Quant Electron</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>53</volume><issue>6</issue><artnum>299</artnum><issn>0306-8919</issn><eissn>1572-817X</eissn><abstract>In this study, analytical solutions are presented for the (2 + 1)-dimensional Boiti–Leon–Pempinelli (BLP) system, which has an important physical property in hydrodynamics. The solutions of the BLP system used to describe the evolution of water waves are examined with the help of the (
G
ʹ/
G
, 1/
G
)-expansion method. These traveling wave solutions are classified as hyperbolic, trigonometric and rational. The graphics of solitary wave solutions obtained with the help of special values given to the parameters in these traveling wave solutions are presented as 3D, 2D and contour with the help of a computer program. In the results and discussion section, the advantages and disadvantages of the method for the BLP system compared to other analytical methods are discussed. Also, the behavior of the wave is examined with the help of simulations, taking into account the velocity parameter for solitary wave solutions.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11082-021-02940-w</doi><orcidid>https://orcid.org/0000-0002-3585-8061</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0306-8919 |
ispartof | Optical and quantum electronics, 2021-06, Vol.53 (6), Article 299 |
issn | 0306-8919 1572-817X |
language | eng |
recordid | cdi_proquest_journals_2540356056 |
source | Springer Nature |
subjects | Characterization and Evaluation of Materials Computational fluid dynamics Computer Communication Networks Electrical Engineering Exact solutions Fluid flow Hydrodynamics Lasers Optical Devices Optics Parameters Photonics Physics Physics and Astronomy Solitary waves Traveling waves Water waves |
title | Extractions of travelling wave solutions of (2 + 1)-dimensional Boiti–Leon–Pempinelli system via (Gʹ/G, 1/G)-expansion method |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T23%3A07%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extractions%20of%20travelling%20wave%20solutions%20of%20(2%E2%80%89+%E2%80%891)-dimensional%20Boiti%E2%80%93Leon%E2%80%93Pempinelli%20system%20via%20(G%CA%B9/G,%201/G)-expansion%20method&rft.jtitle=Optical%20and%20quantum%20electronics&rft.au=Duran,%20Serbay&rft.date=2021-06-01&rft.volume=53&rft.issue=6&rft.artnum=299&rft.issn=0306-8919&rft.eissn=1572-817X&rft_id=info:doi/10.1007/s11082-021-02940-w&rft_dat=%3Cproquest_cross%3E2540356056%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-e9a33bb20b2168e15bc69f452994eb6a975ccef5f59cf5d4192a1cc1b2580c3e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2540356056&rft_id=info:pmid/&rfr_iscdi=true |