Loading…

Extractions of travelling wave solutions of (2 + 1)-dimensional Boiti–Leon–Pempinelli system via (Gʹ/G, 1/G)-expansion method

In this study, analytical solutions are presented for the (2 + 1)-dimensional Boiti–Leon–Pempinelli (BLP) system, which has an important physical property in hydrodynamics. The solutions of the BLP system used to describe the evolution of water waves are examined with the help of the ( G ʹ/ G , 1/ G...

Full description

Saved in:
Bibliographic Details
Published in:Optical and quantum electronics 2021-06, Vol.53 (6), Article 299
Main Author: Duran, Serbay
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-e9a33bb20b2168e15bc69f452994eb6a975ccef5f59cf5d4192a1cc1b2580c3e3
cites cdi_FETCH-LOGICAL-c319t-e9a33bb20b2168e15bc69f452994eb6a975ccef5f59cf5d4192a1cc1b2580c3e3
container_end_page
container_issue 6
container_start_page
container_title Optical and quantum electronics
container_volume 53
creator Duran, Serbay
description In this study, analytical solutions are presented for the (2 + 1)-dimensional Boiti–Leon–Pempinelli (BLP) system, which has an important physical property in hydrodynamics. The solutions of the BLP system used to describe the evolution of water waves are examined with the help of the ( G ʹ/ G , 1/ G )-expansion method. These traveling wave solutions are classified as hyperbolic, trigonometric and rational. The graphics of solitary wave solutions obtained with the help of special values given to the parameters in these traveling wave solutions are presented as 3D, 2D and contour with the help of a computer program. In the results and discussion section, the advantages and disadvantages of the method for the BLP system compared to other analytical methods are discussed. Also, the behavior of the wave is examined with the help of simulations, taking into account the velocity parameter for solitary wave solutions.
doi_str_mv 10.1007/s11082-021-02940-w
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2540356056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2540356056</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-e9a33bb20b2168e15bc69f452994eb6a975ccef5f59cf5d4192a1cc1b2580c3e3</originalsourceid><addsrcrecordid>eNp9UMtKxDAUDaLg-PgBVwE3Dhrn3rTpNEsddBQGdKHgLqSZVCttMzadhztXgmu_xl_wM_wSoyO6c3E593IecA8hOwiHCNDveURIOQOOYWQMbL5COij6nKXYv1klHYggYalEuU42vL8HgCQW0CHPJ4u20aYtXO2py2k4ZrYsi_qWzsNGvSunv-Qe_3h62Q-DXTYuKlv7wOiSHruiLT6eXkfW1QEubTUp6q8U6h99ays6KzTdG76_9YYHFHvDLrOLif5208q2d268RdZyXXq7_YOb5Pr05GpwxkYXw_PB0YiZCGXLrNRRlGUcMo5JalFkJpF5LLiUsc0SLfvCGJuLXEiTi3GMkms0BjMuUjCRjTbJ7jJ30riHqfWtunfTJvzgFRcxRCIBkQQVX6pM47xvbK4mTVHp5lEhqK--1bJvFfpW332reTBFS5MP4vrWNn_R_7g-AdwWiKo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2540356056</pqid></control><display><type>article</type><title>Extractions of travelling wave solutions of (2 + 1)-dimensional Boiti–Leon–Pempinelli system via (Gʹ/G, 1/G)-expansion method</title><source>Springer Nature</source><creator>Duran, Serbay</creator><creatorcontrib>Duran, Serbay</creatorcontrib><description>In this study, analytical solutions are presented for the (2 + 1)-dimensional Boiti–Leon–Pempinelli (BLP) system, which has an important physical property in hydrodynamics. The solutions of the BLP system used to describe the evolution of water waves are examined with the help of the ( G ʹ/ G , 1/ G )-expansion method. These traveling wave solutions are classified as hyperbolic, trigonometric and rational. The graphics of solitary wave solutions obtained with the help of special values given to the parameters in these traveling wave solutions are presented as 3D, 2D and contour with the help of a computer program. In the results and discussion section, the advantages and disadvantages of the method for the BLP system compared to other analytical methods are discussed. Also, the behavior of the wave is examined with the help of simulations, taking into account the velocity parameter for solitary wave solutions.</description><identifier>ISSN: 0306-8919</identifier><identifier>EISSN: 1572-817X</identifier><identifier>DOI: 10.1007/s11082-021-02940-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Computational fluid dynamics ; Computer Communication Networks ; Electrical Engineering ; Exact solutions ; Fluid flow ; Hydrodynamics ; Lasers ; Optical Devices ; Optics ; Parameters ; Photonics ; Physics ; Physics and Astronomy ; Solitary waves ; Traveling waves ; Water waves</subject><ispartof>Optical and quantum electronics, 2021-06, Vol.53 (6), Article 299</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-e9a33bb20b2168e15bc69f452994eb6a975ccef5f59cf5d4192a1cc1b2580c3e3</citedby><cites>FETCH-LOGICAL-c319t-e9a33bb20b2168e15bc69f452994eb6a975ccef5f59cf5d4192a1cc1b2580c3e3</cites><orcidid>0000-0002-3585-8061</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Duran, Serbay</creatorcontrib><title>Extractions of travelling wave solutions of (2 + 1)-dimensional Boiti–Leon–Pempinelli system via (Gʹ/G, 1/G)-expansion method</title><title>Optical and quantum electronics</title><addtitle>Opt Quant Electron</addtitle><description>In this study, analytical solutions are presented for the (2 + 1)-dimensional Boiti–Leon–Pempinelli (BLP) system, which has an important physical property in hydrodynamics. The solutions of the BLP system used to describe the evolution of water waves are examined with the help of the ( G ʹ/ G , 1/ G )-expansion method. These traveling wave solutions are classified as hyperbolic, trigonometric and rational. The graphics of solitary wave solutions obtained with the help of special values given to the parameters in these traveling wave solutions are presented as 3D, 2D and contour with the help of a computer program. In the results and discussion section, the advantages and disadvantages of the method for the BLP system compared to other analytical methods are discussed. Also, the behavior of the wave is examined with the help of simulations, taking into account the velocity parameter for solitary wave solutions.</description><subject>Characterization and Evaluation of Materials</subject><subject>Computational fluid dynamics</subject><subject>Computer Communication Networks</subject><subject>Electrical Engineering</subject><subject>Exact solutions</subject><subject>Fluid flow</subject><subject>Hydrodynamics</subject><subject>Lasers</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Parameters</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Solitary waves</subject><subject>Traveling waves</subject><subject>Water waves</subject><issn>0306-8919</issn><issn>1572-817X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UMtKxDAUDaLg-PgBVwE3Dhrn3rTpNEsddBQGdKHgLqSZVCttMzadhztXgmu_xl_wM_wSoyO6c3E593IecA8hOwiHCNDveURIOQOOYWQMbL5COij6nKXYv1klHYggYalEuU42vL8HgCQW0CHPJ4u20aYtXO2py2k4ZrYsi_qWzsNGvSunv-Qe_3h62Q-DXTYuKlv7wOiSHruiLT6eXkfW1QEubTUp6q8U6h99ays6KzTdG76_9YYHFHvDLrOLif5208q2d268RdZyXXq7_YOb5Pr05GpwxkYXw_PB0YiZCGXLrNRRlGUcMo5JalFkJpF5LLiUsc0SLfvCGJuLXEiTi3GMkms0BjMuUjCRjTbJ7jJ30riHqfWtunfTJvzgFRcxRCIBkQQVX6pM47xvbK4mTVHp5lEhqK--1bJvFfpW332reTBFS5MP4vrWNn_R_7g-AdwWiKo</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Duran, Serbay</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3585-8061</orcidid></search><sort><creationdate>20210601</creationdate><title>Extractions of travelling wave solutions of (2 + 1)-dimensional Boiti–Leon–Pempinelli system via (Gʹ/G, 1/G)-expansion method</title><author>Duran, Serbay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-e9a33bb20b2168e15bc69f452994eb6a975ccef5f59cf5d4192a1cc1b2580c3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Computational fluid dynamics</topic><topic>Computer Communication Networks</topic><topic>Electrical Engineering</topic><topic>Exact solutions</topic><topic>Fluid flow</topic><topic>Hydrodynamics</topic><topic>Lasers</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Parameters</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Solitary waves</topic><topic>Traveling waves</topic><topic>Water waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duran, Serbay</creatorcontrib><collection>CrossRef</collection><jtitle>Optical and quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duran, Serbay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extractions of travelling wave solutions of (2 + 1)-dimensional Boiti–Leon–Pempinelli system via (Gʹ/G, 1/G)-expansion method</atitle><jtitle>Optical and quantum electronics</jtitle><stitle>Opt Quant Electron</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>53</volume><issue>6</issue><artnum>299</artnum><issn>0306-8919</issn><eissn>1572-817X</eissn><abstract>In this study, analytical solutions are presented for the (2 + 1)-dimensional Boiti–Leon–Pempinelli (BLP) system, which has an important physical property in hydrodynamics. The solutions of the BLP system used to describe the evolution of water waves are examined with the help of the ( G ʹ/ G , 1/ G )-expansion method. These traveling wave solutions are classified as hyperbolic, trigonometric and rational. The graphics of solitary wave solutions obtained with the help of special values given to the parameters in these traveling wave solutions are presented as 3D, 2D and contour with the help of a computer program. In the results and discussion section, the advantages and disadvantages of the method for the BLP system compared to other analytical methods are discussed. Also, the behavior of the wave is examined with the help of simulations, taking into account the velocity parameter for solitary wave solutions.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11082-021-02940-w</doi><orcidid>https://orcid.org/0000-0002-3585-8061</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0306-8919
ispartof Optical and quantum electronics, 2021-06, Vol.53 (6), Article 299
issn 0306-8919
1572-817X
language eng
recordid cdi_proquest_journals_2540356056
source Springer Nature
subjects Characterization and Evaluation of Materials
Computational fluid dynamics
Computer Communication Networks
Electrical Engineering
Exact solutions
Fluid flow
Hydrodynamics
Lasers
Optical Devices
Optics
Parameters
Photonics
Physics
Physics and Astronomy
Solitary waves
Traveling waves
Water waves
title Extractions of travelling wave solutions of (2 + 1)-dimensional Boiti–Leon–Pempinelli system via (Gʹ/G, 1/G)-expansion method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T23%3A07%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extractions%20of%20travelling%20wave%20solutions%20of%20(2%E2%80%89+%E2%80%891)-dimensional%20Boiti%E2%80%93Leon%E2%80%93Pempinelli%20system%20via%20(G%CA%B9/G,%201/G)-expansion%20method&rft.jtitle=Optical%20and%20quantum%20electronics&rft.au=Duran,%20Serbay&rft.date=2021-06-01&rft.volume=53&rft.issue=6&rft.artnum=299&rft.issn=0306-8919&rft.eissn=1572-817X&rft_id=info:doi/10.1007/s11082-021-02940-w&rft_dat=%3Cproquest_cross%3E2540356056%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-e9a33bb20b2168e15bc69f452994eb6a975ccef5f59cf5d4192a1cc1b2580c3e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2540356056&rft_id=info:pmid/&rfr_iscdi=true