Loading…

A stochastic value estimation tool for electric vehicle charging points

A stochastic value estimation tool serves as a planning tool with embedded modules for electrical and financial valuation of electric vehicle charging points. The tool is developed in stochastic nature for selected service and technology options. The tool is also valuable as a research tool to creat...

Full description

Saved in:
Bibliographic Details
Published in:Energy (Oxford) 2021-07, Vol.227, p.120335, Article 120335
Main Authors: Poyrazoglu, Gokturk, Coban, Elvin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c367t-eac6c0e0e8ae6a48371b52b1d1d800cffc9163c7e51c7e87790cba953b5538cc3
cites cdi_FETCH-LOGICAL-c367t-eac6c0e0e8ae6a48371b52b1d1d800cffc9163c7e51c7e87790cba953b5538cc3
container_end_page
container_issue
container_start_page 120335
container_title Energy (Oxford)
container_volume 227
creator Poyrazoglu, Gokturk
Coban, Elvin
description A stochastic value estimation tool serves as a planning tool with embedded modules for electrical and financial valuation of electric vehicle charging points. The tool is developed in stochastic nature for selected service and technology options. The tool is also valuable as a research tool to create a data set for a possible charging station with details of vehicle brands, state-of-charge at the arrival, charge duration, and waiting time. A case study for one of the biggest shopping malls in Istanbul, Turkey, where welcomes 350–400 electric vehicles per day is analyzed. The results are discussed on performance metrics such as the average waiting time in the queue, utilization of the station and each socket, profit, customer satisfaction, energy, and power consumption. •A simulation tool capturing the electrical and financial valuation of EV charging is developed.•Average waiting time decreases exponentially with increasing number of charging sockets.•Average utilization reduces to 60% from 90% when the number of sockets decreases to 3 from 9.•Smart charging algorithm is enough to manage the system instead of using the worst-case analysis scenario.
doi_str_mv 10.1016/j.energy.2021.120335
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2540549910</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360544221005843</els_id><sourcerecordid>2561525904</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-eac6c0e0e8ae6a48371b52b1d1d800cffc9163c7e51c7e87790cba953b5538cc3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwDxgisbCknOM4HwtSVUFBqsQCs-VcLq2jNC52Uqn_HldhYmC5u-F5T3cPY_ccFhx49tQuqCe3PS0SSPiCJyCEvGAzXuQizvJCXrIZiAximabJNbvxvgUAWZTljK2XkR8s7rQfDEZH3Y0UUZj3ejC2jwZru6ixLqKOcHBnhHYGO4pCxG1Nv40O1vSDv2VXje483f32Oft6fflcvcWbj_X7armJUWT5EJPGDIGACk2ZTguR80omFa95XQBg02DJM4E5SR5KkeclYKVLKSopRYEo5uxx2ntw9nsMl6q98Uhdp3uyo1eJzLhMZAlpQB_-oK0dXR-uC1QKMi1LDoFKJwqd9d5Row4ufO9OioM621Wtmuyqs1012Q2x5ylG4dmjIac8GuqRauOCKVVb8_-CH2jChLs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2540549910</pqid></control><display><type>article</type><title>A stochastic value estimation tool for electric vehicle charging points</title><source>ScienceDirect Freedom Collection</source><creator>Poyrazoglu, Gokturk ; Coban, Elvin</creator><creatorcontrib>Poyrazoglu, Gokturk ; Coban, Elvin</creatorcontrib><description>A stochastic value estimation tool serves as a planning tool with embedded modules for electrical and financial valuation of electric vehicle charging points. The tool is developed in stochastic nature for selected service and technology options. The tool is also valuable as a research tool to create a data set for a possible charging station with details of vehicle brands, state-of-charge at the arrival, charge duration, and waiting time. A case study for one of the biggest shopping malls in Istanbul, Turkey, where welcomes 350–400 electric vehicles per day is analyzed. The results are discussed on performance metrics such as the average waiting time in the queue, utilization of the station and each socket, profit, customer satisfaction, energy, and power consumption. •A simulation tool capturing the electrical and financial valuation of EV charging is developed.•Average waiting time decreases exponentially with increasing number of charging sockets.•Average utilization reduces to 60% from 90% when the number of sockets decreases to 3 from 9.•Smart charging algorithm is enough to manage the system instead of using the worst-case analysis scenario.</description><identifier>ISSN: 0360-5442</identifier><identifier>EISSN: 1873-6785</identifier><identifier>DOI: 10.1016/j.energy.2021.120335</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>case studies ; Charging point ; consumer satisfaction ; Customer satisfaction ; data collection ; Electric vehicle charging ; Electric vehicle charging stations ; Electric vehicles ; energy ; energy use and consumption ; Performance measurement ; Power consumption ; Shopping malls ; Simulation ; Stochastic</subject><ispartof>Energy (Oxford), 2021-07, Vol.227, p.120335, Article 120335</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jul 15, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-eac6c0e0e8ae6a48371b52b1d1d800cffc9163c7e51c7e87790cba953b5538cc3</citedby><cites>FETCH-LOGICAL-c367t-eac6c0e0e8ae6a48371b52b1d1d800cffc9163c7e51c7e87790cba953b5538cc3</cites><orcidid>0000-0002-3818-1957</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Poyrazoglu, Gokturk</creatorcontrib><creatorcontrib>Coban, Elvin</creatorcontrib><title>A stochastic value estimation tool for electric vehicle charging points</title><title>Energy (Oxford)</title><description>A stochastic value estimation tool serves as a planning tool with embedded modules for electrical and financial valuation of electric vehicle charging points. The tool is developed in stochastic nature for selected service and technology options. The tool is also valuable as a research tool to create a data set for a possible charging station with details of vehicle brands, state-of-charge at the arrival, charge duration, and waiting time. A case study for one of the biggest shopping malls in Istanbul, Turkey, where welcomes 350–400 electric vehicles per day is analyzed. The results are discussed on performance metrics such as the average waiting time in the queue, utilization of the station and each socket, profit, customer satisfaction, energy, and power consumption. •A simulation tool capturing the electrical and financial valuation of EV charging is developed.•Average waiting time decreases exponentially with increasing number of charging sockets.•Average utilization reduces to 60% from 90% when the number of sockets decreases to 3 from 9.•Smart charging algorithm is enough to manage the system instead of using the worst-case analysis scenario.</description><subject>case studies</subject><subject>Charging point</subject><subject>consumer satisfaction</subject><subject>Customer satisfaction</subject><subject>data collection</subject><subject>Electric vehicle charging</subject><subject>Electric vehicle charging stations</subject><subject>Electric vehicles</subject><subject>energy</subject><subject>energy use and consumption</subject><subject>Performance measurement</subject><subject>Power consumption</subject><subject>Shopping malls</subject><subject>Simulation</subject><subject>Stochastic</subject><issn>0360-5442</issn><issn>1873-6785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwDxgisbCknOM4HwtSVUFBqsQCs-VcLq2jNC52Uqn_HldhYmC5u-F5T3cPY_ccFhx49tQuqCe3PS0SSPiCJyCEvGAzXuQizvJCXrIZiAximabJNbvxvgUAWZTljK2XkR8s7rQfDEZH3Y0UUZj3ejC2jwZru6ixLqKOcHBnhHYGO4pCxG1Nv40O1vSDv2VXje483f32Oft6fflcvcWbj_X7armJUWT5EJPGDIGACk2ZTguR80omFa95XQBg02DJM4E5SR5KkeclYKVLKSopRYEo5uxx2ntw9nsMl6q98Uhdp3uyo1eJzLhMZAlpQB_-oK0dXR-uC1QKMi1LDoFKJwqd9d5Row4ufO9OioM621Wtmuyqs1012Q2x5ylG4dmjIac8GuqRauOCKVVb8_-CH2jChLs</recordid><startdate>20210715</startdate><enddate>20210715</enddate><creator>Poyrazoglu, Gokturk</creator><creator>Coban, Elvin</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-3818-1957</orcidid></search><sort><creationdate>20210715</creationdate><title>A stochastic value estimation tool for electric vehicle charging points</title><author>Poyrazoglu, Gokturk ; Coban, Elvin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-eac6c0e0e8ae6a48371b52b1d1d800cffc9163c7e51c7e87790cba953b5538cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>case studies</topic><topic>Charging point</topic><topic>consumer satisfaction</topic><topic>Customer satisfaction</topic><topic>data collection</topic><topic>Electric vehicle charging</topic><topic>Electric vehicle charging stations</topic><topic>Electric vehicles</topic><topic>energy</topic><topic>energy use and consumption</topic><topic>Performance measurement</topic><topic>Power consumption</topic><topic>Shopping malls</topic><topic>Simulation</topic><topic>Stochastic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Poyrazoglu, Gokturk</creatorcontrib><creatorcontrib>Coban, Elvin</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Energy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Poyrazoglu, Gokturk</au><au>Coban, Elvin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A stochastic value estimation tool for electric vehicle charging points</atitle><jtitle>Energy (Oxford)</jtitle><date>2021-07-15</date><risdate>2021</risdate><volume>227</volume><spage>120335</spage><pages>120335-</pages><artnum>120335</artnum><issn>0360-5442</issn><eissn>1873-6785</eissn><abstract>A stochastic value estimation tool serves as a planning tool with embedded modules for electrical and financial valuation of electric vehicle charging points. The tool is developed in stochastic nature for selected service and technology options. The tool is also valuable as a research tool to create a data set for a possible charging station with details of vehicle brands, state-of-charge at the arrival, charge duration, and waiting time. A case study for one of the biggest shopping malls in Istanbul, Turkey, where welcomes 350–400 electric vehicles per day is analyzed. The results are discussed on performance metrics such as the average waiting time in the queue, utilization of the station and each socket, profit, customer satisfaction, energy, and power consumption. •A simulation tool capturing the electrical and financial valuation of EV charging is developed.•Average waiting time decreases exponentially with increasing number of charging sockets.•Average utilization reduces to 60% from 90% when the number of sockets decreases to 3 from 9.•Smart charging algorithm is enough to manage the system instead of using the worst-case analysis scenario.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.energy.2021.120335</doi><orcidid>https://orcid.org/0000-0002-3818-1957</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0360-5442
ispartof Energy (Oxford), 2021-07, Vol.227, p.120335, Article 120335
issn 0360-5442
1873-6785
language eng
recordid cdi_proquest_journals_2540549910
source ScienceDirect Freedom Collection
subjects case studies
Charging point
consumer satisfaction
Customer satisfaction
data collection
Electric vehicle charging
Electric vehicle charging stations
Electric vehicles
energy
energy use and consumption
Performance measurement
Power consumption
Shopping malls
Simulation
Stochastic
title A stochastic value estimation tool for electric vehicle charging points
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T20%3A58%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20stochastic%20value%20estimation%20tool%20for%20electric%20vehicle%20charging%20points&rft.jtitle=Energy%20(Oxford)&rft.au=Poyrazoglu,%20Gokturk&rft.date=2021-07-15&rft.volume=227&rft.spage=120335&rft.pages=120335-&rft.artnum=120335&rft.issn=0360-5442&rft.eissn=1873-6785&rft_id=info:doi/10.1016/j.energy.2021.120335&rft_dat=%3Cproquest_cross%3E2561525904%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c367t-eac6c0e0e8ae6a48371b52b1d1d800cffc9163c7e51c7e87790cba953b5538cc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2540549910&rft_id=info:pmid/&rfr_iscdi=true