Loading…

Boosting Simulation of High Efficiency Alternative Combustion Mode Engines

Four high-efficiency alternative combustion modes were modeled to determine the potential brake thermal efficiency (BTE) relative to a traditional lean burn compression ignition diesel engine with selective catalytic reduction (SCR) aftertreatment. The four combustion modes include stoichiometric pi...

Full description

Saved in:
Bibliographic Details
Published in:SAE International Journal of Engines 2011-01, Vol.4 (1), p.375-393, Article 2011-01-0358
Main Authors: Chadwell, Christopher, Alger, Terrence, Roberts, Charles, Arnold, Steven
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Four high-efficiency alternative combustion modes were modeled to determine the potential brake thermal efficiency (BTE) relative to a traditional lean burn compression ignition diesel engine with selective catalytic reduction (SCR) aftertreatment. The four combustion modes include stoichiometric pilot-ignited gasoline with EGR dilution (SwRI HEDGE technology), dual fuel premixed compression ignition (University of Wisconsin), gasoline partially premixed combustion (Lund University), and homogenous charge compression ignition (HCCI) (SwRI Clean Diesel IV). For each of the alternative combustion modes, zero-D simulation of the peak torque condition was used to show the expected BTE. For all alternative combustion modes, simulation showed that the BTE was very dependent on dilution levels, whether air or EGR. While the gross indicated thermal efficiency (ITE) could be shown to improve as the dilution was increased, the required pumping work decreased the BTE at EGR rates above 40%. None of the alternative combustion modes was able to exceed the BTE of a traditional lean burn diesel engine with EGR when calibrated to 2.7 g/kW-h engine-out NOx when constrained by currently available turbocharger efficiency.
ISSN:1946-3936
1946-3944
1946-3944
DOI:10.4271/2011-01-0358