Loading…

A 0D Phenomenological Approach to Model Diesel HCCI Combustion with Multi-Injection Strategies Using Probability Density Functions and Detailed Tabulated Chemistry

More and more stringent restrictions concerning the pollutant emissions of ICE (Internal Combustion Engines) constitute a major challenge for the automotive industry. New combustion strategies such as LTC (Low Temperature Combustion), PCCI (Premixed Controlled Compression Ignition) or HCCI (Homogene...

Full description

Saved in:
Bibliographic Details
Published in:SAE International Journal of Engines 2009, Vol.2 (1), p.548-568, Article 2009-01-0678
Main Authors: Dulbecco, A, Lafossas, F. A, Poinsot, T. J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c367t-e9915ffd82dc8f0d1cb9e1fd3bbcc7a3eb4248315ea1fad036f0d0bbef2d68f13
cites cdi_FETCH-LOGICAL-c367t-e9915ffd82dc8f0d1cb9e1fd3bbcc7a3eb4248315ea1fad036f0d0bbef2d68f13
container_end_page 568
container_issue 1
container_start_page 548
container_title SAE International Journal of Engines
container_volume 2
creator Dulbecco, A
Lafossas, F. A
Poinsot, T. J
description More and more stringent restrictions concerning the pollutant emissions of ICE (Internal Combustion Engines) constitute a major challenge for the automotive industry. New combustion strategies such as LTC (Low Temperature Combustion), PCCI (Premixed Controlled Compression Ignition) or HCCI (Homogeneous Charge Compression Ignition) are promising solutions to achieve the imposed emission standards. They permit low NOx and soot emissions via a lean and highly diluted combustion regime, thus assuring low combustion temperatures. In next generation of ICE, new technologies allow the implementation of complex injection strategies in order to optimize the combustion process. This requires the creation of numerical tools adapted to these new challenges. This paper presents a 0D Diesel HCCI combustion model based on a physical 3D CFD (Computational Fluid Dynamics) approach. The purpose of the model is to correctly predict the characteristics of auto-ignition and heat release for all Diesel combustion modes. A new formalism based on PDFs (Probability Density Functions) is proposed to describe the mixture formation process in a multi-injection strategy context. This formalism has been coupled with detailed tabulated chemistry to account for the impact of the EGR (Exhaust Gas Recirculation) on the kinetics of combustion. The model is finally validated against experimental data. Considering the good agreement with the experiments and the low CPU costs, the presented approach is revealed to be promising for global-system simulations.
doi_str_mv 10.4271/2009-01-0678
format article
fullrecord <record><control><sourceid>jstor_AFWRR</sourceid><recordid>TN_cdi_proquest_journals_2540571792</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26308417</jstor_id><sourcerecordid>26308417</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-e9915ffd82dc8f0d1cb9e1fd3bbcc7a3eb4248315ea1fad036f0d0bbef2d68f13</originalsourceid><addsrcrecordid>eNpdkUtr3DAQx01pIWnaW64F0R5yqRvJ8vO4eJtmISGBJmehx9jW4pVcSSbs5-kXrRyXhPYw_MXMbx6aSZJzgr_lWUUuM4ybFJMUl1X9JjklTV6mtMnzty9vWp4k773f44hgik-T3xuEt-h-AGMP0Ubba8lHtJkmZ7kcULDo1ioY0VaDj3LdtjvU2oOYfdDWoCcdBnQ7j0GnO7MH-ez8GRwP0McM9Oi16dG9s4ILPepwRFswftGr2TzTHnGjojdwPYJCD1zMY8xWqB3goH1wxw_Ju46PHj7-1bPk8er7Q3ud3tz92LWbm1TSsgopNA0puk7VmZJ1hxWRogHSKSqElBWnIPIsrykpgJOOK0zLCGEhoMtUWXeEniVf1rrx779m8IHt7exMbMmyIsdFRaomi9TXlZLOeu-gY5PTB-6OjGC2nIEtZ2CYsOUMEb9Ycc-BBZCDWRY88Qmc_59MX0ltAsTWy4L4-DrGv_ynld_7YN3LFFlJcZ2TKsY_r_FB98OTdsCWwtHA9CxjhBVxG38A63qviQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2540571792</pqid></control><display><type>article</type><title>A 0D Phenomenological Approach to Model Diesel HCCI Combustion with Multi-Injection Strategies Using Probability Density Functions and Detailed Tabulated Chemistry</title><source>SAE Technical Papers, 1998-Current</source><creator>Dulbecco, A ; Lafossas, F. A ; Poinsot, T. J</creator><creatorcontrib>Dulbecco, A ; Lafossas, F. A ; Poinsot, T. J</creatorcontrib><description>More and more stringent restrictions concerning the pollutant emissions of ICE (Internal Combustion Engines) constitute a major challenge for the automotive industry. New combustion strategies such as LTC (Low Temperature Combustion), PCCI (Premixed Controlled Compression Ignition) or HCCI (Homogeneous Charge Compression Ignition) are promising solutions to achieve the imposed emission standards. They permit low NOx and soot emissions via a lean and highly diluted combustion regime, thus assuring low combustion temperatures. In next generation of ICE, new technologies allow the implementation of complex injection strategies in order to optimize the combustion process. This requires the creation of numerical tools adapted to these new challenges. This paper presents a 0D Diesel HCCI combustion model based on a physical 3D CFD (Computational Fluid Dynamics) approach. The purpose of the model is to correctly predict the characteristics of auto-ignition and heat release for all Diesel combustion modes. A new formalism based on PDFs (Probability Density Functions) is proposed to describe the mixture formation process in a multi-injection strategy context. This formalism has been coupled with detailed tabulated chemistry to account for the impact of the EGR (Exhaust Gas Recirculation) on the kinetics of combustion. The model is finally validated against experimental data. Considering the good agreement with the experiments and the low CPU costs, the presented approach is revealed to be promising for global-system simulations.</description><identifier>ISSN: 1946-3936</identifier><identifier>ISSN: 1946-3944</identifier><identifier>EISSN: 1946-3944</identifier><identifier>DOI: 10.4271/2009-01-0678</identifier><language>eng</language><publisher>Warrendale: SAE International</publisher><subject>Automobile industry ; Automotive engines ; Combustion ; Cylinders ; Emission standards ; Engines ; Evaporation ; Fuel combustion ; Ice ; Ignition ; Induced substructures ; Internal combustion engines ; Low temperature ; Pollutants ; Probability density functions ; Soot ; Spray volume ; Three dimensional modeling ; Turbulence</subject><ispartof>SAE International Journal of Engines, 2009, Vol.2 (1), p.548-568, Article 2009-01-0678</ispartof><rights>Copyright © 2009 SAE International</rights><rights>Copyright SAE International, a Pennsylvania Not-for Profit 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-e9915ffd82dc8f0d1cb9e1fd3bbcc7a3eb4248315ea1fad036f0d0bbef2d68f13</citedby><cites>FETCH-LOGICAL-c367t-e9915ffd82dc8f0d1cb9e1fd3bbcc7a3eb4248315ea1fad036f0d0bbef2d68f13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26308417$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26308417$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,4022,10621,26341,27922,27923,27924,58237,58470,79253,79256</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.4271/2009-01-0678$$EView_record_in_SAE_Mobilus$$FView_record_in_$$GSAE_Mobilus</linktorsrc></links><search><creatorcontrib>Dulbecco, A</creatorcontrib><creatorcontrib>Lafossas, F. A</creatorcontrib><creatorcontrib>Poinsot, T. J</creatorcontrib><title>A 0D Phenomenological Approach to Model Diesel HCCI Combustion with Multi-Injection Strategies Using Probability Density Functions and Detailed Tabulated Chemistry</title><title>SAE International Journal of Engines</title><description>More and more stringent restrictions concerning the pollutant emissions of ICE (Internal Combustion Engines) constitute a major challenge for the automotive industry. New combustion strategies such as LTC (Low Temperature Combustion), PCCI (Premixed Controlled Compression Ignition) or HCCI (Homogeneous Charge Compression Ignition) are promising solutions to achieve the imposed emission standards. They permit low NOx and soot emissions via a lean and highly diluted combustion regime, thus assuring low combustion temperatures. In next generation of ICE, new technologies allow the implementation of complex injection strategies in order to optimize the combustion process. This requires the creation of numerical tools adapted to these new challenges. This paper presents a 0D Diesel HCCI combustion model based on a physical 3D CFD (Computational Fluid Dynamics) approach. The purpose of the model is to correctly predict the characteristics of auto-ignition and heat release for all Diesel combustion modes. A new formalism based on PDFs (Probability Density Functions) is proposed to describe the mixture formation process in a multi-injection strategy context. This formalism has been coupled with detailed tabulated chemistry to account for the impact of the EGR (Exhaust Gas Recirculation) on the kinetics of combustion. The model is finally validated against experimental data. Considering the good agreement with the experiments and the low CPU costs, the presented approach is revealed to be promising for global-system simulations.</description><subject>Automobile industry</subject><subject>Automotive engines</subject><subject>Combustion</subject><subject>Cylinders</subject><subject>Emission standards</subject><subject>Engines</subject><subject>Evaporation</subject><subject>Fuel combustion</subject><subject>Ice</subject><subject>Ignition</subject><subject>Induced substructures</subject><subject>Internal combustion engines</subject><subject>Low temperature</subject><subject>Pollutants</subject><subject>Probability density functions</subject><subject>Soot</subject><subject>Spray volume</subject><subject>Three dimensional modeling</subject><subject>Turbulence</subject><issn>1946-3936</issn><issn>1946-3944</issn><issn>1946-3944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>AFWRR</sourceid><recordid>eNpdkUtr3DAQx01pIWnaW64F0R5yqRvJ8vO4eJtmISGBJmehx9jW4pVcSSbs5-kXrRyXhPYw_MXMbx6aSZJzgr_lWUUuM4ybFJMUl1X9JjklTV6mtMnzty9vWp4k773f44hgik-T3xuEt-h-AGMP0Ubba8lHtJkmZ7kcULDo1ioY0VaDj3LdtjvU2oOYfdDWoCcdBnQ7j0GnO7MH-ez8GRwP0McM9Oi16dG9s4ILPepwRFswftGr2TzTHnGjojdwPYJCD1zMY8xWqB3goH1wxw_Ju46PHj7-1bPk8er7Q3ud3tz92LWbm1TSsgopNA0puk7VmZJ1hxWRogHSKSqElBWnIPIsrykpgJOOK0zLCGEhoMtUWXeEniVf1rrx779m8IHt7exMbMmyIsdFRaomi9TXlZLOeu-gY5PTB-6OjGC2nIEtZ2CYsOUMEb9Ycc-BBZCDWRY88Qmc_59MX0ltAsTWy4L4-DrGv_ynld_7YN3LFFlJcZ2TKsY_r_FB98OTdsCWwtHA9CxjhBVxG38A63qviQ</recordid><startdate>2009</startdate><enddate>2009</enddate><creator>Dulbecco, A</creator><creator>Lafossas, F. A</creator><creator>Poinsot, T. J</creator><general>SAE International</general><general>SAE International, a Pennsylvania Not-for Profit</general><scope>AFWRR</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>2009</creationdate><title>A 0D Phenomenological Approach to Model Diesel HCCI Combustion with Multi-Injection Strategies Using Probability Density Functions and Detailed Tabulated Chemistry</title><author>Dulbecco, A ; Lafossas, F. A ; Poinsot, T. J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-e9915ffd82dc8f0d1cb9e1fd3bbcc7a3eb4248315ea1fad036f0d0bbef2d68f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Automobile industry</topic><topic>Automotive engines</topic><topic>Combustion</topic><topic>Cylinders</topic><topic>Emission standards</topic><topic>Engines</topic><topic>Evaporation</topic><topic>Fuel combustion</topic><topic>Ice</topic><topic>Ignition</topic><topic>Induced substructures</topic><topic>Internal combustion engines</topic><topic>Low temperature</topic><topic>Pollutants</topic><topic>Probability density functions</topic><topic>Soot</topic><topic>Spray volume</topic><topic>Three dimensional modeling</topic><topic>Turbulence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dulbecco, A</creatorcontrib><creatorcontrib>Lafossas, F. A</creatorcontrib><creatorcontrib>Poinsot, T. J</creatorcontrib><collection>SAE Technical Papers, 1998-Current</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>SAE International Journal of Engines</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dulbecco, A</au><au>Lafossas, F. A</au><au>Poinsot, T. J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A 0D Phenomenological Approach to Model Diesel HCCI Combustion with Multi-Injection Strategies Using Probability Density Functions and Detailed Tabulated Chemistry</atitle><jtitle>SAE International Journal of Engines</jtitle><date>2009</date><risdate>2009</risdate><volume>2</volume><issue>1</issue><spage>548</spage><epage>568</epage><pages>548-568</pages><artnum>2009-01-0678</artnum><issn>1946-3936</issn><issn>1946-3944</issn><eissn>1946-3944</eissn><abstract>More and more stringent restrictions concerning the pollutant emissions of ICE (Internal Combustion Engines) constitute a major challenge for the automotive industry. New combustion strategies such as LTC (Low Temperature Combustion), PCCI (Premixed Controlled Compression Ignition) or HCCI (Homogeneous Charge Compression Ignition) are promising solutions to achieve the imposed emission standards. They permit low NOx and soot emissions via a lean and highly diluted combustion regime, thus assuring low combustion temperatures. In next generation of ICE, new technologies allow the implementation of complex injection strategies in order to optimize the combustion process. This requires the creation of numerical tools adapted to these new challenges. This paper presents a 0D Diesel HCCI combustion model based on a physical 3D CFD (Computational Fluid Dynamics) approach. The purpose of the model is to correctly predict the characteristics of auto-ignition and heat release for all Diesel combustion modes. A new formalism based on PDFs (Probability Density Functions) is proposed to describe the mixture formation process in a multi-injection strategy context. This formalism has been coupled with detailed tabulated chemistry to account for the impact of the EGR (Exhaust Gas Recirculation) on the kinetics of combustion. The model is finally validated against experimental data. Considering the good agreement with the experiments and the low CPU costs, the presented approach is revealed to be promising for global-system simulations.</abstract><cop>Warrendale</cop><pub>SAE International</pub><doi>10.4271/2009-01-0678</doi><tpages>21</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1946-3936
ispartof SAE International Journal of Engines, 2009, Vol.2 (1), p.548-568, Article 2009-01-0678
issn 1946-3936
1946-3944
1946-3944
language eng
recordid cdi_proquest_journals_2540571792
source SAE Technical Papers, 1998-Current
subjects Automobile industry
Automotive engines
Combustion
Cylinders
Emission standards
Engines
Evaporation
Fuel combustion
Ice
Ignition
Induced substructures
Internal combustion engines
Low temperature
Pollutants
Probability density functions
Soot
Spray volume
Three dimensional modeling
Turbulence
title A 0D Phenomenological Approach to Model Diesel HCCI Combustion with Multi-Injection Strategies Using Probability Density Functions and Detailed Tabulated Chemistry
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T17%3A23%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_AFWRR&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%200D%20Phenomenological%20Approach%20to%20Model%20Diesel%20HCCI%20Combustion%20with%20Multi-Injection%20Strategies%20Using%20Probability%20Density%20Functions%20and%20Detailed%20Tabulated%20Chemistry&rft.jtitle=SAE%20International%20Journal%20of%20Engines&rft.au=Dulbecco,%20A&rft.date=2009&rft.volume=2&rft.issue=1&rft.spage=548&rft.epage=568&rft.pages=548-568&rft.artnum=2009-01-0678&rft.issn=1946-3936&rft.eissn=1946-3944&rft_id=info:doi/10.4271/2009-01-0678&rft_dat=%3Cjstor_AFWRR%3E26308417%3C/jstor_AFWRR%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c367t-e9915ffd82dc8f0d1cb9e1fd3bbcc7a3eb4248315ea1fad036f0d0bbef2d68f13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2540571792&rft_id=info:pmid/&rft_jstor_id=26308417&rfr_iscdi=true