Loading…
Evaluation of feature selection using information gain and gain ratio on bank marketing classification using naïve bayes
One of the efforts of banks to do marketing is by telephone to offer their products, such as deposits. There are many variables that influence whether the customer decides to subscribe or not. In this study, we present a comparison of feature selection from high features dataset. We use a bank marke...
Saved in:
Published in: | Journal of physics. Conference series 2021-06, Vol.1918 (4), p.42153 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | One of the efforts of banks to do marketing is by telephone to offer their products, such as deposits. There are many variables that influence whether the customer decides to subscribe or not. In this study, we present a comparison of feature selection from high features dataset. We use a bank marketing dataset which has 20 features and consists of 4,119 instances. We consider 2 ranking methods entropy-based, namely Information Gain (IG) and Gain Ratio (GR). In our experiment, we classified the various selected based on the ranking of the selected features using Naïve Bayes. We show that the selection of different features is important for classification accuracy. The different combinations of feature selection can affect the accuracy results. |
---|---|
ISSN: | 1742-6588 1742-6596 |
DOI: | 10.1088/1742-6596/1918/4/042153 |