Loading…
Improved electrochemical performances of LiOVPO4/ketjen black composite prepared by a novel solvent-thermal oxidation route
Orthorhombic β-LiVOPO 4 /ketjen black composite is obtained via a two-step chemical synthesis. In the first step, Li 3 V 2 (PO 4 ) 3 -V 2 O 3 /ketjen black precursor is obtained by spray-drying process and subsequent heat treatment. Solvent-thermal oxidation of the precursor results in the complete...
Saved in:
Published in: | Ionics 2021, Vol.27 (7), p.2937-2943 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-29b64c3816cb72305c795f80f79d965d75189d135c01af01aa99c13168889e2d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-29b64c3816cb72305c795f80f79d965d75189d135c01af01aa99c13168889e2d3 |
container_end_page | 2943 |
container_issue | 7 |
container_start_page | 2937 |
container_title | Ionics |
container_volume | 27 |
creator | Tang, Anping Chen, Juedong Fu, Yangyang Chen, Hezhang Xu, Guorong Song, Haishen Peng, Ronghua Yi, Qingfeng |
description | Orthorhombic β-LiVOPO
4
/ketjen black composite is obtained via a two-step chemical synthesis. In the first step, Li
3
V
2
(PO
4
)
3
-V
2
O
3
/ketjen black precursor is obtained by spray-drying process and subsequent heat treatment. Solvent-thermal oxidation of the precursor results in the complete formation of β-LiVOPO
4
/ketjen black composite. The synthesized composite is characterized by means of X-ray diffraction, scanning electron microscopy, nitrogen sorption, and electrochemical tests. Galvanostatic charge–discharge cycling of the composite shows an initial discharge specific capacity of 305, 289, 276, 242, 157, and 77 mAh·g
−1
at C/20, C/10, C/5, C/2, 1C, and 2C rate in a voltage window of 2.0–4.5 V, respectively. At higher current rates, although it exhibits good retention of discharge capacity, the capacity is found to reduce with increasing current rates. The composite displays excellent cycling performance at a current rate of C/5 up to 50 cycles, which yields a high specific capacity of 245 mAh·g
−1
at the end of the 50th cycle and a small capacity fading of 0.13% per cycle. |
doi_str_mv | 10.1007/s11581-021-04053-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2541347276</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2541347276</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-29b64c3816cb72305c795f80f79d965d75189d135c01af01aa99c13168889e2d3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wssQ71I7HjJap4VKpUFsDWcp0JTZvEwXYrKn4elyKxYzGazb1nNAeha0puKSFyEigtSpoRliYnBc_ECRrRUrCMSEFO0YioXGaS5PIcXYSwJkQIyuQIfc26wbsdVBhasNE7u4KusabFA_ja-c70FgJ2NZ43i7fnRT7ZQFxDj5etsRtsXTe40ETAg4fB-MRZ7rHBfUK2OLh2B33M4goSqMXus6lMbFyPvdtGuERntWkDXP3uMXp9uH-ZPmXzxeNsejfPLKcqZkwtRW55SYVdSsZJYaUq6pLUUlVKFJUsaKkqygtLqKnTGKUs5VSUZamAVXyMbo7c9OnHFkLUa7f1fTqpWZFTnksmRUqxY8p6F4KHWg--6Yzfa0r0QbI-StZJsv6RrA8lfiyFFO7fwf-h_2l9Aw0ygGo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2541347276</pqid></control><display><type>article</type><title>Improved electrochemical performances of LiOVPO4/ketjen black composite prepared by a novel solvent-thermal oxidation route</title><source>Springer Link</source><creator>Tang, Anping ; Chen, Juedong ; Fu, Yangyang ; Chen, Hezhang ; Xu, Guorong ; Song, Haishen ; Peng, Ronghua ; Yi, Qingfeng</creator><creatorcontrib>Tang, Anping ; Chen, Juedong ; Fu, Yangyang ; Chen, Hezhang ; Xu, Guorong ; Song, Haishen ; Peng, Ronghua ; Yi, Qingfeng</creatorcontrib><description>Orthorhombic β-LiVOPO
4
/ketjen black composite is obtained via a two-step chemical synthesis. In the first step, Li
3
V
2
(PO
4
)
3
-V
2
O
3
/ketjen black precursor is obtained by spray-drying process and subsequent heat treatment. Solvent-thermal oxidation of the precursor results in the complete formation of β-LiVOPO
4
/ketjen black composite. The synthesized composite is characterized by means of X-ray diffraction, scanning electron microscopy, nitrogen sorption, and electrochemical tests. Galvanostatic charge–discharge cycling of the composite shows an initial discharge specific capacity of 305, 289, 276, 242, 157, and 77 mAh·g
−1
at C/20, C/10, C/5, C/2, 1C, and 2C rate in a voltage window of 2.0–4.5 V, respectively. At higher current rates, although it exhibits good retention of discharge capacity, the capacity is found to reduce with increasing current rates. The composite displays excellent cycling performance at a current rate of C/5 up to 50 cycles, which yields a high specific capacity of 245 mAh·g
−1
at the end of the 50th cycle and a small capacity fading of 0.13% per cycle.</description><identifier>ISSN: 0947-7047</identifier><identifier>EISSN: 1862-0760</identifier><identifier>DOI: 10.1007/s11581-021-04053-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Chemical synthesis ; Chemistry ; Chemistry and Materials Science ; Condensed Matter Physics ; Cycles ; Discharge ; Electrochemistry ; Energy Storage ; Heat treatment ; Optical and Electronic Materials ; Original Paper ; Oxidation ; Precursors ; Renewable and Green Energy ; Solvents ; Vanadium oxides</subject><ispartof>Ionics, 2021, Vol.27 (7), p.2937-2943</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-29b64c3816cb72305c795f80f79d965d75189d135c01af01aa99c13168889e2d3</citedby><cites>FETCH-LOGICAL-c319t-29b64c3816cb72305c795f80f79d965d75189d135c01af01aa99c13168889e2d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Tang, Anping</creatorcontrib><creatorcontrib>Chen, Juedong</creatorcontrib><creatorcontrib>Fu, Yangyang</creatorcontrib><creatorcontrib>Chen, Hezhang</creatorcontrib><creatorcontrib>Xu, Guorong</creatorcontrib><creatorcontrib>Song, Haishen</creatorcontrib><creatorcontrib>Peng, Ronghua</creatorcontrib><creatorcontrib>Yi, Qingfeng</creatorcontrib><title>Improved electrochemical performances of LiOVPO4/ketjen black composite prepared by a novel solvent-thermal oxidation route</title><title>Ionics</title><addtitle>Ionics</addtitle><description>Orthorhombic β-LiVOPO
4
/ketjen black composite is obtained via a two-step chemical synthesis. In the first step, Li
3
V
2
(PO
4
)
3
-V
2
O
3
/ketjen black precursor is obtained by spray-drying process and subsequent heat treatment. Solvent-thermal oxidation of the precursor results in the complete formation of β-LiVOPO
4
/ketjen black composite. The synthesized composite is characterized by means of X-ray diffraction, scanning electron microscopy, nitrogen sorption, and electrochemical tests. Galvanostatic charge–discharge cycling of the composite shows an initial discharge specific capacity of 305, 289, 276, 242, 157, and 77 mAh·g
−1
at C/20, C/10, C/5, C/2, 1C, and 2C rate in a voltage window of 2.0–4.5 V, respectively. At higher current rates, although it exhibits good retention of discharge capacity, the capacity is found to reduce with increasing current rates. The composite displays excellent cycling performance at a current rate of C/5 up to 50 cycles, which yields a high specific capacity of 245 mAh·g
−1
at the end of the 50th cycle and a small capacity fading of 0.13% per cycle.</description><subject>Chemical synthesis</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Cycles</subject><subject>Discharge</subject><subject>Electrochemistry</subject><subject>Energy Storage</subject><subject>Heat treatment</subject><subject>Optical and Electronic Materials</subject><subject>Original Paper</subject><subject>Oxidation</subject><subject>Precursors</subject><subject>Renewable and Green Energy</subject><subject>Solvents</subject><subject>Vanadium oxides</subject><issn>0947-7047</issn><issn>1862-0760</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwA6wssQ71I7HjJap4VKpUFsDWcp0JTZvEwXYrKn4elyKxYzGazb1nNAeha0puKSFyEigtSpoRliYnBc_ECRrRUrCMSEFO0YioXGaS5PIcXYSwJkQIyuQIfc26wbsdVBhasNE7u4KusabFA_ja-c70FgJ2NZ43i7fnRT7ZQFxDj5etsRtsXTe40ETAg4fB-MRZ7rHBfUK2OLh2B33M4goSqMXus6lMbFyPvdtGuERntWkDXP3uMXp9uH-ZPmXzxeNsejfPLKcqZkwtRW55SYVdSsZJYaUq6pLUUlVKFJUsaKkqygtLqKnTGKUs5VSUZamAVXyMbo7c9OnHFkLUa7f1fTqpWZFTnksmRUqxY8p6F4KHWg--6Yzfa0r0QbI-StZJsv6RrA8lfiyFFO7fwf-h_2l9Aw0ygGo</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Tang, Anping</creator><creator>Chen, Juedong</creator><creator>Fu, Yangyang</creator><creator>Chen, Hezhang</creator><creator>Xu, Guorong</creator><creator>Song, Haishen</creator><creator>Peng, Ronghua</creator><creator>Yi, Qingfeng</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2021</creationdate><title>Improved electrochemical performances of LiOVPO4/ketjen black composite prepared by a novel solvent-thermal oxidation route</title><author>Tang, Anping ; Chen, Juedong ; Fu, Yangyang ; Chen, Hezhang ; Xu, Guorong ; Song, Haishen ; Peng, Ronghua ; Yi, Qingfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-29b64c3816cb72305c795f80f79d965d75189d135c01af01aa99c13168889e2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemical synthesis</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Cycles</topic><topic>Discharge</topic><topic>Electrochemistry</topic><topic>Energy Storage</topic><topic>Heat treatment</topic><topic>Optical and Electronic Materials</topic><topic>Original Paper</topic><topic>Oxidation</topic><topic>Precursors</topic><topic>Renewable and Green Energy</topic><topic>Solvents</topic><topic>Vanadium oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Anping</creatorcontrib><creatorcontrib>Chen, Juedong</creatorcontrib><creatorcontrib>Fu, Yangyang</creatorcontrib><creatorcontrib>Chen, Hezhang</creatorcontrib><creatorcontrib>Xu, Guorong</creatorcontrib><creatorcontrib>Song, Haishen</creatorcontrib><creatorcontrib>Peng, Ronghua</creatorcontrib><creatorcontrib>Yi, Qingfeng</creatorcontrib><collection>CrossRef</collection><jtitle>Ionics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Anping</au><au>Chen, Juedong</au><au>Fu, Yangyang</au><au>Chen, Hezhang</au><au>Xu, Guorong</au><au>Song, Haishen</au><au>Peng, Ronghua</au><au>Yi, Qingfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved electrochemical performances of LiOVPO4/ketjen black composite prepared by a novel solvent-thermal oxidation route</atitle><jtitle>Ionics</jtitle><stitle>Ionics</stitle><date>2021</date><risdate>2021</risdate><volume>27</volume><issue>7</issue><spage>2937</spage><epage>2943</epage><pages>2937-2943</pages><issn>0947-7047</issn><eissn>1862-0760</eissn><abstract>Orthorhombic β-LiVOPO
4
/ketjen black composite is obtained via a two-step chemical synthesis. In the first step, Li
3
V
2
(PO
4
)
3
-V
2
O
3
/ketjen black precursor is obtained by spray-drying process and subsequent heat treatment. Solvent-thermal oxidation of the precursor results in the complete formation of β-LiVOPO
4
/ketjen black composite. The synthesized composite is characterized by means of X-ray diffraction, scanning electron microscopy, nitrogen sorption, and electrochemical tests. Galvanostatic charge–discharge cycling of the composite shows an initial discharge specific capacity of 305, 289, 276, 242, 157, and 77 mAh·g
−1
at C/20, C/10, C/5, C/2, 1C, and 2C rate in a voltage window of 2.0–4.5 V, respectively. At higher current rates, although it exhibits good retention of discharge capacity, the capacity is found to reduce with increasing current rates. The composite displays excellent cycling performance at a current rate of C/5 up to 50 cycles, which yields a high specific capacity of 245 mAh·g
−1
at the end of the 50th cycle and a small capacity fading of 0.13% per cycle.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11581-021-04053-6</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-7047 |
ispartof | Ionics, 2021, Vol.27 (7), p.2937-2943 |
issn | 0947-7047 1862-0760 |
language | eng |
recordid | cdi_proquest_journals_2541347276 |
source | Springer Link |
subjects | Chemical synthesis Chemistry Chemistry and Materials Science Condensed Matter Physics Cycles Discharge Electrochemistry Energy Storage Heat treatment Optical and Electronic Materials Original Paper Oxidation Precursors Renewable and Green Energy Solvents Vanadium oxides |
title | Improved electrochemical performances of LiOVPO4/ketjen black composite prepared by a novel solvent-thermal oxidation route |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A57%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20electrochemical%20performances%20of%20LiOVPO4/ketjen%20black%20composite%20prepared%20by%20a%20novel%20solvent-thermal%20oxidation%20route&rft.jtitle=Ionics&rft.au=Tang,%20Anping&rft.date=2021&rft.volume=27&rft.issue=7&rft.spage=2937&rft.epage=2943&rft.pages=2937-2943&rft.issn=0947-7047&rft.eissn=1862-0760&rft_id=info:doi/10.1007/s11581-021-04053-6&rft_dat=%3Cproquest_cross%3E2541347276%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-29b64c3816cb72305c795f80f79d965d75189d135c01af01aa99c13168889e2d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2541347276&rft_id=info:pmid/&rfr_iscdi=true |