Loading…
Pre-Trained Models: Past, Present and Future
Large-scale pre-trained models (PTMs) such as BERT and GPT have recently achieved great success and become a milestone in the field of artificial intelligence (AI). Owing to sophisticated pre-training objectives and huge model parameters, large-scale PTMs can effectively capture knowledge from massi...
Saved in:
Published in: | arXiv.org 2021-08 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Xu, Han Zhang, Zhengyan Ding, Ning Gu, Yuxian Liu, Xiao Huo, Yuqi Qiu, Jiezhong Yao, Yuan Zhang, Ao Zhang, Liang Han, Wentao Huang, Minlie Qin, Jin Lan, Yanyan Liu, Yang Liu, Zhiyuan Lu, Zhiwu Qiu, Xipeng Song, Ruihua Tang, Jie Ji-Rong, Wen Yuan, Jinhui Wayne Xin Zhao Zhu, Jun |
description | Large-scale pre-trained models (PTMs) such as BERT and GPT have recently achieved great success and become a milestone in the field of artificial intelligence (AI). Owing to sophisticated pre-training objectives and huge model parameters, large-scale PTMs can effectively capture knowledge from massive labeled and unlabeled data. By storing knowledge into huge parameters and fine-tuning on specific tasks, the rich knowledge implicitly encoded in huge parameters can benefit a variety of downstream tasks, which has been extensively demonstrated via experimental verification and empirical analysis. It is now the consensus of the AI community to adopt PTMs as backbone for downstream tasks rather than learning models from scratch. In this paper, we take a deep look into the history of pre-training, especially its special relation with transfer learning and self-supervised learning, to reveal the crucial position of PTMs in the AI development spectrum. Further, we comprehensively review the latest breakthroughs of PTMs. These breakthroughs are driven by the surge of computational power and the increasing availability of data, towards four important directions: designing effective architectures, utilizing rich contexts, improving computational efficiency, and conducting interpretation and theoretical analysis. Finally, we discuss a series of open problems and research directions of PTMs, and hope our view can inspire and advance the future study of PTMs. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2541573609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2541573609</sourcerecordid><originalsourceid>FETCH-proquest_journals_25415736093</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQCShK1Q0pSszMS01R8M1PSc0ptlIISCwu0VEAyhSn5pUoJOalKLiVlpQWpfIwsKYl5hSn8kJpbgZlN9cQZw_dgqL8wtLU4pL4rPzSojygVLyRqYmhqbmxmYGlMXGqABkeMLE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2541573609</pqid></control><display><type>article</type><title>Pre-Trained Models: Past, Present and Future</title><source>Publicly Available Content Database</source><creator>Xu, Han ; Zhang, Zhengyan ; Ding, Ning ; Gu, Yuxian ; Liu, Xiao ; Huo, Yuqi ; Qiu, Jiezhong ; Yao, Yuan ; Zhang, Ao ; Zhang, Liang ; Han, Wentao ; Huang, Minlie ; Qin, Jin ; Lan, Yanyan ; Liu, Yang ; Liu, Zhiyuan ; Lu, Zhiwu ; Qiu, Xipeng ; Song, Ruihua ; Tang, Jie ; Ji-Rong, Wen ; Yuan, Jinhui ; Wayne Xin Zhao ; Zhu, Jun</creator><creatorcontrib>Xu, Han ; Zhang, Zhengyan ; Ding, Ning ; Gu, Yuxian ; Liu, Xiao ; Huo, Yuqi ; Qiu, Jiezhong ; Yao, Yuan ; Zhang, Ao ; Zhang, Liang ; Han, Wentao ; Huang, Minlie ; Qin, Jin ; Lan, Yanyan ; Liu, Yang ; Liu, Zhiyuan ; Lu, Zhiwu ; Qiu, Xipeng ; Song, Ruihua ; Tang, Jie ; Ji-Rong, Wen ; Yuan, Jinhui ; Wayne Xin Zhao ; Zhu, Jun</creatorcontrib><description>Large-scale pre-trained models (PTMs) such as BERT and GPT have recently achieved great success and become a milestone in the field of artificial intelligence (AI). Owing to sophisticated pre-training objectives and huge model parameters, large-scale PTMs can effectively capture knowledge from massive labeled and unlabeled data. By storing knowledge into huge parameters and fine-tuning on specific tasks, the rich knowledge implicitly encoded in huge parameters can benefit a variety of downstream tasks, which has been extensively demonstrated via experimental verification and empirical analysis. It is now the consensus of the AI community to adopt PTMs as backbone for downstream tasks rather than learning models from scratch. In this paper, we take a deep look into the history of pre-training, especially its special relation with transfer learning and self-supervised learning, to reveal the crucial position of PTMs in the AI development spectrum. Further, we comprehensively review the latest breakthroughs of PTMs. These breakthroughs are driven by the surge of computational power and the increasing availability of data, towards four important directions: designing effective architectures, utilizing rich contexts, improving computational efficiency, and conducting interpretation and theoretical analysis. Finally, we discuss a series of open problems and research directions of PTMs, and hope our view can inspire and advance the future study of PTMs.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial intelligence ; Empirical analysis ; Mathematical models ; Parameters ; Supervised learning ; Training</subject><ispartof>arXiv.org, 2021-08</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2541573609?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,36991,44569</link.rule.ids></links><search><creatorcontrib>Xu, Han</creatorcontrib><creatorcontrib>Zhang, Zhengyan</creatorcontrib><creatorcontrib>Ding, Ning</creatorcontrib><creatorcontrib>Gu, Yuxian</creatorcontrib><creatorcontrib>Liu, Xiao</creatorcontrib><creatorcontrib>Huo, Yuqi</creatorcontrib><creatorcontrib>Qiu, Jiezhong</creatorcontrib><creatorcontrib>Yao, Yuan</creatorcontrib><creatorcontrib>Zhang, Ao</creatorcontrib><creatorcontrib>Zhang, Liang</creatorcontrib><creatorcontrib>Han, Wentao</creatorcontrib><creatorcontrib>Huang, Minlie</creatorcontrib><creatorcontrib>Qin, Jin</creatorcontrib><creatorcontrib>Lan, Yanyan</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Liu, Zhiyuan</creatorcontrib><creatorcontrib>Lu, Zhiwu</creatorcontrib><creatorcontrib>Qiu, Xipeng</creatorcontrib><creatorcontrib>Song, Ruihua</creatorcontrib><creatorcontrib>Tang, Jie</creatorcontrib><creatorcontrib>Ji-Rong, Wen</creatorcontrib><creatorcontrib>Yuan, Jinhui</creatorcontrib><creatorcontrib>Wayne Xin Zhao</creatorcontrib><creatorcontrib>Zhu, Jun</creatorcontrib><title>Pre-Trained Models: Past, Present and Future</title><title>arXiv.org</title><description>Large-scale pre-trained models (PTMs) such as BERT and GPT have recently achieved great success and become a milestone in the field of artificial intelligence (AI). Owing to sophisticated pre-training objectives and huge model parameters, large-scale PTMs can effectively capture knowledge from massive labeled and unlabeled data. By storing knowledge into huge parameters and fine-tuning on specific tasks, the rich knowledge implicitly encoded in huge parameters can benefit a variety of downstream tasks, which has been extensively demonstrated via experimental verification and empirical analysis. It is now the consensus of the AI community to adopt PTMs as backbone for downstream tasks rather than learning models from scratch. In this paper, we take a deep look into the history of pre-training, especially its special relation with transfer learning and self-supervised learning, to reveal the crucial position of PTMs in the AI development spectrum. Further, we comprehensively review the latest breakthroughs of PTMs. These breakthroughs are driven by the surge of computational power and the increasing availability of data, towards four important directions: designing effective architectures, utilizing rich contexts, improving computational efficiency, and conducting interpretation and theoretical analysis. Finally, we discuss a series of open problems and research directions of PTMs, and hope our view can inspire and advance the future study of PTMs.</description><subject>Artificial intelligence</subject><subject>Empirical analysis</subject><subject>Mathematical models</subject><subject>Parameters</subject><subject>Supervised learning</subject><subject>Training</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQCShK1Q0pSszMS01R8M1PSc0ptlIISCwu0VEAyhSn5pUoJOalKLiVlpQWpfIwsKYl5hSn8kJpbgZlN9cQZw_dgqL8wtLU4pL4rPzSojygVLyRqYmhqbmxmYGlMXGqABkeMLE</recordid><startdate>20210811</startdate><enddate>20210811</enddate><creator>Xu, Han</creator><creator>Zhang, Zhengyan</creator><creator>Ding, Ning</creator><creator>Gu, Yuxian</creator><creator>Liu, Xiao</creator><creator>Huo, Yuqi</creator><creator>Qiu, Jiezhong</creator><creator>Yao, Yuan</creator><creator>Zhang, Ao</creator><creator>Zhang, Liang</creator><creator>Han, Wentao</creator><creator>Huang, Minlie</creator><creator>Qin, Jin</creator><creator>Lan, Yanyan</creator><creator>Liu, Yang</creator><creator>Liu, Zhiyuan</creator><creator>Lu, Zhiwu</creator><creator>Qiu, Xipeng</creator><creator>Song, Ruihua</creator><creator>Tang, Jie</creator><creator>Ji-Rong, Wen</creator><creator>Yuan, Jinhui</creator><creator>Wayne Xin Zhao</creator><creator>Zhu, Jun</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210811</creationdate><title>Pre-Trained Models: Past, Present and Future</title><author>Xu, Han ; Zhang, Zhengyan ; Ding, Ning ; Gu, Yuxian ; Liu, Xiao ; Huo, Yuqi ; Qiu, Jiezhong ; Yao, Yuan ; Zhang, Ao ; Zhang, Liang ; Han, Wentao ; Huang, Minlie ; Qin, Jin ; Lan, Yanyan ; Liu, Yang ; Liu, Zhiyuan ; Lu, Zhiwu ; Qiu, Xipeng ; Song, Ruihua ; Tang, Jie ; Ji-Rong, Wen ; Yuan, Jinhui ; Wayne Xin Zhao ; Zhu, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25415736093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial intelligence</topic><topic>Empirical analysis</topic><topic>Mathematical models</topic><topic>Parameters</topic><topic>Supervised learning</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Xu, Han</creatorcontrib><creatorcontrib>Zhang, Zhengyan</creatorcontrib><creatorcontrib>Ding, Ning</creatorcontrib><creatorcontrib>Gu, Yuxian</creatorcontrib><creatorcontrib>Liu, Xiao</creatorcontrib><creatorcontrib>Huo, Yuqi</creatorcontrib><creatorcontrib>Qiu, Jiezhong</creatorcontrib><creatorcontrib>Yao, Yuan</creatorcontrib><creatorcontrib>Zhang, Ao</creatorcontrib><creatorcontrib>Zhang, Liang</creatorcontrib><creatorcontrib>Han, Wentao</creatorcontrib><creatorcontrib>Huang, Minlie</creatorcontrib><creatorcontrib>Qin, Jin</creatorcontrib><creatorcontrib>Lan, Yanyan</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Liu, Zhiyuan</creatorcontrib><creatorcontrib>Lu, Zhiwu</creatorcontrib><creatorcontrib>Qiu, Xipeng</creatorcontrib><creatorcontrib>Song, Ruihua</creatorcontrib><creatorcontrib>Tang, Jie</creatorcontrib><creatorcontrib>Ji-Rong, Wen</creatorcontrib><creatorcontrib>Yuan, Jinhui</creatorcontrib><creatorcontrib>Wayne Xin Zhao</creatorcontrib><creatorcontrib>Zhu, Jun</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Han</au><au>Zhang, Zhengyan</au><au>Ding, Ning</au><au>Gu, Yuxian</au><au>Liu, Xiao</au><au>Huo, Yuqi</au><au>Qiu, Jiezhong</au><au>Yao, Yuan</au><au>Zhang, Ao</au><au>Zhang, Liang</au><au>Han, Wentao</au><au>Huang, Minlie</au><au>Qin, Jin</au><au>Lan, Yanyan</au><au>Liu, Yang</au><au>Liu, Zhiyuan</au><au>Lu, Zhiwu</au><au>Qiu, Xipeng</au><au>Song, Ruihua</au><au>Tang, Jie</au><au>Ji-Rong, Wen</au><au>Yuan, Jinhui</au><au>Wayne Xin Zhao</au><au>Zhu, Jun</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Pre-Trained Models: Past, Present and Future</atitle><jtitle>arXiv.org</jtitle><date>2021-08-11</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>Large-scale pre-trained models (PTMs) such as BERT and GPT have recently achieved great success and become a milestone in the field of artificial intelligence (AI). Owing to sophisticated pre-training objectives and huge model parameters, large-scale PTMs can effectively capture knowledge from massive labeled and unlabeled data. By storing knowledge into huge parameters and fine-tuning on specific tasks, the rich knowledge implicitly encoded in huge parameters can benefit a variety of downstream tasks, which has been extensively demonstrated via experimental verification and empirical analysis. It is now the consensus of the AI community to adopt PTMs as backbone for downstream tasks rather than learning models from scratch. In this paper, we take a deep look into the history of pre-training, especially its special relation with transfer learning and self-supervised learning, to reveal the crucial position of PTMs in the AI development spectrum. Further, we comprehensively review the latest breakthroughs of PTMs. These breakthroughs are driven by the surge of computational power and the increasing availability of data, towards four important directions: designing effective architectures, utilizing rich contexts, improving computational efficiency, and conducting interpretation and theoretical analysis. Finally, we discuss a series of open problems and research directions of PTMs, and hope our view can inspire and advance the future study of PTMs.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2541573609 |
source | Publicly Available Content Database |
subjects | Artificial intelligence Empirical analysis Mathematical models Parameters Supervised learning Training |
title | Pre-Trained Models: Past, Present and Future |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T01%3A09%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Pre-Trained%20Models:%20Past,%20Present%20and%20Future&rft.jtitle=arXiv.org&rft.au=Xu,%20Han&rft.date=2021-08-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2541573609%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_25415736093%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2541573609&rft_id=info:pmid/&rfr_iscdi=true |