Loading…
Making Room for Growing Oriented FASnI3 with Large Grains via Cold Precursor Solution
Tin halide perovskites are promising candidates for preparing efficient lead‐free perovskite solar cells due to their ideal band gap and high charge‐carrier mobility. However, the notorious rapid crystallization process results in the inferior power conversion efficiency (PCE) of tin perovskite sola...
Saved in:
Published in: | Advanced functional materials 2021-06, Vol.31 (25), p.n/a |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | n/a |
container_issue | 25 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 31 |
creator | Cui, Danyu Liu, Xiao Wu, Tianhao Lin, Xuesong Luo, Xinhui Wu, Yongzhen Segawa, Hiroshi Yang, Xudong Zhang, Yiqiang Wang, Yanbo Han, Liyuan |
description | Tin halide perovskites are promising candidates for preparing efficient lead‐free perovskite solar cells due to their ideal band gap and high charge‐carrier mobility. However, the notorious rapid crystallization process results in the inferior power conversion efficiency (PCE) of tin perovskite solar cells (TPSCs). Here, a facile method is employed to manage this crystallization process by using cold precursor solution that raises the critical Gibbs free energy to slow down the nucleation rate, sparing both space and time for crystal growth. In this way, highly oriented FASnI3 films with micrometer‐scale grains are fabricated and an increase of 70 mV in the open‐circuit voltage is obtained for TPSCs. This method is compatible with other existed strategies such as additive engineering or the post‐treatment method. The best‐performing device that combines 0 °C precursor solution and post‐treatment method demonstrates a PCE of 12.11%.
The relationship between the temperature of the precursor and the crystallization process of FASnI3 is disclosed. Due to the suppressed nucleation rate and prolonged crystal growth in cold precursors, a large grain and highly oriented FASnI3 film is obtained, resulting in an efficiency of 9.46%. This facile method is compatible with other strategies, yielding an efficiency of 12.11% after post‐treatment. |
doi_str_mv | 10.1002/adfm.202100931 |
format | article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2541891128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2541891128</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1481-9715751c19bd06241336f47332310591464c78d1ff6bb55c78875ea6739548c33</originalsourceid><addsrcrecordid>eNo9kM1PAjEQxRujiYhePTfxvNrp5_ZIUJAEghFJvDVlt4vFZYvdXQn_vUswnOa9yW_mJQ-heyCPQAh9snmxfaSEdkYzuEA9kCATRmh6edbweY1u6npDCCjFeA8tZ_bbV2v8HsIWFyHicQz742Ievasal-PRYFFNGN775gtPbVy7DrG-qvGvt3gYyhy_RZe1se6OF6FsGx-qW3RV2LJ2d_-zj5ajl4_hazKdjyfDwTTZAU8h0QqEEpCBXuVEUg6MyYIrxigDIjRwyTOV5lAUcrUSotOpEs5KxbTgacZYHz2c_u5i-Gld3ZhNaGPVRRoqOKQagKYdpU_U3pfuYHbRb208GCDm2Js59mbOvZnB82h2duwPCJhgwg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2541891128</pqid></control><display><type>article</type><title>Making Room for Growing Oriented FASnI3 with Large Grains via Cold Precursor Solution</title><source>Wiley</source><creator>Cui, Danyu ; Liu, Xiao ; Wu, Tianhao ; Lin, Xuesong ; Luo, Xinhui ; Wu, Yongzhen ; Segawa, Hiroshi ; Yang, Xudong ; Zhang, Yiqiang ; Wang, Yanbo ; Han, Liyuan</creator><creatorcontrib>Cui, Danyu ; Liu, Xiao ; Wu, Tianhao ; Lin, Xuesong ; Luo, Xinhui ; Wu, Yongzhen ; Segawa, Hiroshi ; Yang, Xudong ; Zhang, Yiqiang ; Wang, Yanbo ; Han, Liyuan</creatorcontrib><description>Tin halide perovskites are promising candidates for preparing efficient lead‐free perovskite solar cells due to their ideal band gap and high charge‐carrier mobility. However, the notorious rapid crystallization process results in the inferior power conversion efficiency (PCE) of tin perovskite solar cells (TPSCs). Here, a facile method is employed to manage this crystallization process by using cold precursor solution that raises the critical Gibbs free energy to slow down the nucleation rate, sparing both space and time for crystal growth. In this way, highly oriented FASnI3 films with micrometer‐scale grains are fabricated and an increase of 70 mV in the open‐circuit voltage is obtained for TPSCs. This method is compatible with other existed strategies such as additive engineering or the post‐treatment method. The best‐performing device that combines 0 °C precursor solution and post‐treatment method demonstrates a PCE of 12.11%.
The relationship between the temperature of the precursor and the crystallization process of FASnI3 is disclosed. Due to the suppressed nucleation rate and prolonged crystal growth in cold precursors, a large grain and highly oriented FASnI3 film is obtained, resulting in an efficiency of 9.46%. This facile method is compatible with other strategies, yielding an efficiency of 12.11% after post‐treatment.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202100931</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Carrier mobility ; Circuits ; Crystal growth ; Crystal structure ; Crystallization ; Current carriers ; Energy conversion efficiency ; Gibbs free energy ; Grains ; Materials science ; micrometer‐scale grain size ; Nucleation ; oriented growth ; Perovskites ; Photovoltaic cells ; Precursors ; Solar cells ; temperature control ; tin perovskite solar cells</subject><ispartof>Advanced functional materials, 2021-06, Vol.31 (25), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-9766-9015</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Cui, Danyu</creatorcontrib><creatorcontrib>Liu, Xiao</creatorcontrib><creatorcontrib>Wu, Tianhao</creatorcontrib><creatorcontrib>Lin, Xuesong</creatorcontrib><creatorcontrib>Luo, Xinhui</creatorcontrib><creatorcontrib>Wu, Yongzhen</creatorcontrib><creatorcontrib>Segawa, Hiroshi</creatorcontrib><creatorcontrib>Yang, Xudong</creatorcontrib><creatorcontrib>Zhang, Yiqiang</creatorcontrib><creatorcontrib>Wang, Yanbo</creatorcontrib><creatorcontrib>Han, Liyuan</creatorcontrib><title>Making Room for Growing Oriented FASnI3 with Large Grains via Cold Precursor Solution</title><title>Advanced functional materials</title><description>Tin halide perovskites are promising candidates for preparing efficient lead‐free perovskite solar cells due to their ideal band gap and high charge‐carrier mobility. However, the notorious rapid crystallization process results in the inferior power conversion efficiency (PCE) of tin perovskite solar cells (TPSCs). Here, a facile method is employed to manage this crystallization process by using cold precursor solution that raises the critical Gibbs free energy to slow down the nucleation rate, sparing both space and time for crystal growth. In this way, highly oriented FASnI3 films with micrometer‐scale grains are fabricated and an increase of 70 mV in the open‐circuit voltage is obtained for TPSCs. This method is compatible with other existed strategies such as additive engineering or the post‐treatment method. The best‐performing device that combines 0 °C precursor solution and post‐treatment method demonstrates a PCE of 12.11%.
The relationship between the temperature of the precursor and the crystallization process of FASnI3 is disclosed. Due to the suppressed nucleation rate and prolonged crystal growth in cold precursors, a large grain and highly oriented FASnI3 film is obtained, resulting in an efficiency of 9.46%. This facile method is compatible with other strategies, yielding an efficiency of 12.11% after post‐treatment.</description><subject>Carrier mobility</subject><subject>Circuits</subject><subject>Crystal growth</subject><subject>Crystal structure</subject><subject>Crystallization</subject><subject>Current carriers</subject><subject>Energy conversion efficiency</subject><subject>Gibbs free energy</subject><subject>Grains</subject><subject>Materials science</subject><subject>micrometer‐scale grain size</subject><subject>Nucleation</subject><subject>oriented growth</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Precursors</subject><subject>Solar cells</subject><subject>temperature control</subject><subject>tin perovskite solar cells</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kM1PAjEQxRujiYhePTfxvNrp5_ZIUJAEghFJvDVlt4vFZYvdXQn_vUswnOa9yW_mJQ-heyCPQAh9snmxfaSEdkYzuEA9kCATRmh6edbweY1u6npDCCjFeA8tZ_bbV2v8HsIWFyHicQz742Ievasal-PRYFFNGN775gtPbVy7DrG-qvGvt3gYyhy_RZe1se6OF6FsGx-qW3RV2LJ2d_-zj5ajl4_hazKdjyfDwTTZAU8h0QqEEpCBXuVEUg6MyYIrxigDIjRwyTOV5lAUcrUSotOpEs5KxbTgacZYHz2c_u5i-Gld3ZhNaGPVRRoqOKQagKYdpU_U3pfuYHbRb208GCDm2Js59mbOvZnB82h2duwPCJhgwg</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Cui, Danyu</creator><creator>Liu, Xiao</creator><creator>Wu, Tianhao</creator><creator>Lin, Xuesong</creator><creator>Luo, Xinhui</creator><creator>Wu, Yongzhen</creator><creator>Segawa, Hiroshi</creator><creator>Yang, Xudong</creator><creator>Zhang, Yiqiang</creator><creator>Wang, Yanbo</creator><creator>Han, Liyuan</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9766-9015</orcidid></search><sort><creationdate>20210601</creationdate><title>Making Room for Growing Oriented FASnI3 with Large Grains via Cold Precursor Solution</title><author>Cui, Danyu ; Liu, Xiao ; Wu, Tianhao ; Lin, Xuesong ; Luo, Xinhui ; Wu, Yongzhen ; Segawa, Hiroshi ; Yang, Xudong ; Zhang, Yiqiang ; Wang, Yanbo ; Han, Liyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1481-9715751c19bd06241336f47332310591464c78d1ff6bb55c78875ea6739548c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Carrier mobility</topic><topic>Circuits</topic><topic>Crystal growth</topic><topic>Crystal structure</topic><topic>Crystallization</topic><topic>Current carriers</topic><topic>Energy conversion efficiency</topic><topic>Gibbs free energy</topic><topic>Grains</topic><topic>Materials science</topic><topic>micrometer‐scale grain size</topic><topic>Nucleation</topic><topic>oriented growth</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Precursors</topic><topic>Solar cells</topic><topic>temperature control</topic><topic>tin perovskite solar cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cui, Danyu</creatorcontrib><creatorcontrib>Liu, Xiao</creatorcontrib><creatorcontrib>Wu, Tianhao</creatorcontrib><creatorcontrib>Lin, Xuesong</creatorcontrib><creatorcontrib>Luo, Xinhui</creatorcontrib><creatorcontrib>Wu, Yongzhen</creatorcontrib><creatorcontrib>Segawa, Hiroshi</creatorcontrib><creatorcontrib>Yang, Xudong</creatorcontrib><creatorcontrib>Zhang, Yiqiang</creatorcontrib><creatorcontrib>Wang, Yanbo</creatorcontrib><creatorcontrib>Han, Liyuan</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cui, Danyu</au><au>Liu, Xiao</au><au>Wu, Tianhao</au><au>Lin, Xuesong</au><au>Luo, Xinhui</au><au>Wu, Yongzhen</au><au>Segawa, Hiroshi</au><au>Yang, Xudong</au><au>Zhang, Yiqiang</au><au>Wang, Yanbo</au><au>Han, Liyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Making Room for Growing Oriented FASnI3 with Large Grains via Cold Precursor Solution</atitle><jtitle>Advanced functional materials</jtitle><date>2021-06-01</date><risdate>2021</risdate><volume>31</volume><issue>25</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Tin halide perovskites are promising candidates for preparing efficient lead‐free perovskite solar cells due to their ideal band gap and high charge‐carrier mobility. However, the notorious rapid crystallization process results in the inferior power conversion efficiency (PCE) of tin perovskite solar cells (TPSCs). Here, a facile method is employed to manage this crystallization process by using cold precursor solution that raises the critical Gibbs free energy to slow down the nucleation rate, sparing both space and time for crystal growth. In this way, highly oriented FASnI3 films with micrometer‐scale grains are fabricated and an increase of 70 mV in the open‐circuit voltage is obtained for TPSCs. This method is compatible with other existed strategies such as additive engineering or the post‐treatment method. The best‐performing device that combines 0 °C precursor solution and post‐treatment method demonstrates a PCE of 12.11%.
The relationship between the temperature of the precursor and the crystallization process of FASnI3 is disclosed. Due to the suppressed nucleation rate and prolonged crystal growth in cold precursors, a large grain and highly oriented FASnI3 film is obtained, resulting in an efficiency of 9.46%. This facile method is compatible with other strategies, yielding an efficiency of 12.11% after post‐treatment.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202100931</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-9766-9015</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2021-06, Vol.31 (25), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2541891128 |
source | Wiley |
subjects | Carrier mobility Circuits Crystal growth Crystal structure Crystallization Current carriers Energy conversion efficiency Gibbs free energy Grains Materials science micrometer‐scale grain size Nucleation oriented growth Perovskites Photovoltaic cells Precursors Solar cells temperature control tin perovskite solar cells |
title | Making Room for Growing Oriented FASnI3 with Large Grains via Cold Precursor Solution |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A40%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Making%20Room%20for%20Growing%20Oriented%20FASnI3%20with%20Large%20Grains%20via%20Cold%20Precursor%20Solution&rft.jtitle=Advanced%20functional%20materials&rft.au=Cui,%20Danyu&rft.date=2021-06-01&rft.volume=31&rft.issue=25&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202100931&rft_dat=%3Cproquest_wiley%3E2541891128%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p1481-9715751c19bd06241336f47332310591464c78d1ff6bb55c78875ea6739548c33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2541891128&rft_id=info:pmid/&rfr_iscdi=true |