Loading…

Making Room for Growing Oriented FASnI3 with Large Grains via Cold Precursor Solution

Tin halide perovskites are promising candidates for preparing efficient lead‐free perovskite solar cells due to their ideal band gap and high charge‐carrier mobility. However, the notorious rapid crystallization process results in the inferior power conversion efficiency (PCE) of tin perovskite sola...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials 2021-06, Vol.31 (25), p.n/a
Main Authors: Cui, Danyu, Liu, Xiao, Wu, Tianhao, Lin, Xuesong, Luo, Xinhui, Wu, Yongzhen, Segawa, Hiroshi, Yang, Xudong, Zhang, Yiqiang, Wang, Yanbo, Han, Liyuan
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page n/a
container_issue 25
container_start_page
container_title Advanced functional materials
container_volume 31
creator Cui, Danyu
Liu, Xiao
Wu, Tianhao
Lin, Xuesong
Luo, Xinhui
Wu, Yongzhen
Segawa, Hiroshi
Yang, Xudong
Zhang, Yiqiang
Wang, Yanbo
Han, Liyuan
description Tin halide perovskites are promising candidates for preparing efficient lead‐free perovskite solar cells due to their ideal band gap and high charge‐carrier mobility. However, the notorious rapid crystallization process results in the inferior power conversion efficiency (PCE) of tin perovskite solar cells (TPSCs). Here, a facile method is employed to manage this crystallization process by using cold precursor solution that raises the critical Gibbs free energy to slow down the nucleation rate, sparing both space and time for crystal growth. In this way, highly oriented FASnI3 films with micrometer‐scale grains are fabricated and an increase of 70 mV in the open‐circuit voltage is obtained for TPSCs. This method is compatible with other existed strategies such as additive engineering or the post‐treatment method. The best‐performing device that combines 0 °C precursor solution and post‐treatment method demonstrates a PCE of 12.11%. The relationship between the temperature of the precursor and the crystallization process of FASnI3 is disclosed. Due to the suppressed nucleation rate and prolonged crystal growth in cold precursors, a large grain and highly oriented FASnI3 film is obtained, resulting in an efficiency of 9.46%. This facile method is compatible with other strategies, yielding an efficiency of 12.11% after post‐treatment.
doi_str_mv 10.1002/adfm.202100931
format article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2541891128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2541891128</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1481-9715751c19bd06241336f47332310591464c78d1ff6bb55c78875ea6739548c33</originalsourceid><addsrcrecordid>eNo9kM1PAjEQxRujiYhePTfxvNrp5_ZIUJAEghFJvDVlt4vFZYvdXQn_vUswnOa9yW_mJQ-heyCPQAh9snmxfaSEdkYzuEA9kCATRmh6edbweY1u6npDCCjFeA8tZ_bbV2v8HsIWFyHicQz742Ievasal-PRYFFNGN775gtPbVy7DrG-qvGvt3gYyhy_RZe1se6OF6FsGx-qW3RV2LJ2d_-zj5ajl4_hazKdjyfDwTTZAU8h0QqEEpCBXuVEUg6MyYIrxigDIjRwyTOV5lAUcrUSotOpEs5KxbTgacZYHz2c_u5i-Gld3ZhNaGPVRRoqOKQagKYdpU_U3pfuYHbRb208GCDm2Js59mbOvZnB82h2duwPCJhgwg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2541891128</pqid></control><display><type>article</type><title>Making Room for Growing Oriented FASnI3 with Large Grains via Cold Precursor Solution</title><source>Wiley</source><creator>Cui, Danyu ; Liu, Xiao ; Wu, Tianhao ; Lin, Xuesong ; Luo, Xinhui ; Wu, Yongzhen ; Segawa, Hiroshi ; Yang, Xudong ; Zhang, Yiqiang ; Wang, Yanbo ; Han, Liyuan</creator><creatorcontrib>Cui, Danyu ; Liu, Xiao ; Wu, Tianhao ; Lin, Xuesong ; Luo, Xinhui ; Wu, Yongzhen ; Segawa, Hiroshi ; Yang, Xudong ; Zhang, Yiqiang ; Wang, Yanbo ; Han, Liyuan</creatorcontrib><description>Tin halide perovskites are promising candidates for preparing efficient lead‐free perovskite solar cells due to their ideal band gap and high charge‐carrier mobility. However, the notorious rapid crystallization process results in the inferior power conversion efficiency (PCE) of tin perovskite solar cells (TPSCs). Here, a facile method is employed to manage this crystallization process by using cold precursor solution that raises the critical Gibbs free energy to slow down the nucleation rate, sparing both space and time for crystal growth. In this way, highly oriented FASnI3 films with micrometer‐scale grains are fabricated and an increase of 70 mV in the open‐circuit voltage is obtained for TPSCs. This method is compatible with other existed strategies such as additive engineering or the post‐treatment method. The best‐performing device that combines 0 °C precursor solution and post‐treatment method demonstrates a PCE of 12.11%. The relationship between the temperature of the precursor and the crystallization process of FASnI3 is disclosed. Due to the suppressed nucleation rate and prolonged crystal growth in cold precursors, a large grain and highly oriented FASnI3 film is obtained, resulting in an efficiency of 9.46%. This facile method is compatible with other strategies, yielding an efficiency of 12.11% after post‐treatment.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202100931</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Carrier mobility ; Circuits ; Crystal growth ; Crystal structure ; Crystallization ; Current carriers ; Energy conversion efficiency ; Gibbs free energy ; Grains ; Materials science ; micrometer‐scale grain size ; Nucleation ; oriented growth ; Perovskites ; Photovoltaic cells ; Precursors ; Solar cells ; temperature control ; tin perovskite solar cells</subject><ispartof>Advanced functional materials, 2021-06, Vol.31 (25), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-9766-9015</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Cui, Danyu</creatorcontrib><creatorcontrib>Liu, Xiao</creatorcontrib><creatorcontrib>Wu, Tianhao</creatorcontrib><creatorcontrib>Lin, Xuesong</creatorcontrib><creatorcontrib>Luo, Xinhui</creatorcontrib><creatorcontrib>Wu, Yongzhen</creatorcontrib><creatorcontrib>Segawa, Hiroshi</creatorcontrib><creatorcontrib>Yang, Xudong</creatorcontrib><creatorcontrib>Zhang, Yiqiang</creatorcontrib><creatorcontrib>Wang, Yanbo</creatorcontrib><creatorcontrib>Han, Liyuan</creatorcontrib><title>Making Room for Growing Oriented FASnI3 with Large Grains via Cold Precursor Solution</title><title>Advanced functional materials</title><description>Tin halide perovskites are promising candidates for preparing efficient lead‐free perovskite solar cells due to their ideal band gap and high charge‐carrier mobility. However, the notorious rapid crystallization process results in the inferior power conversion efficiency (PCE) of tin perovskite solar cells (TPSCs). Here, a facile method is employed to manage this crystallization process by using cold precursor solution that raises the critical Gibbs free energy to slow down the nucleation rate, sparing both space and time for crystal growth. In this way, highly oriented FASnI3 films with micrometer‐scale grains are fabricated and an increase of 70 mV in the open‐circuit voltage is obtained for TPSCs. This method is compatible with other existed strategies such as additive engineering or the post‐treatment method. The best‐performing device that combines 0 °C precursor solution and post‐treatment method demonstrates a PCE of 12.11%. The relationship between the temperature of the precursor and the crystallization process of FASnI3 is disclosed. Due to the suppressed nucleation rate and prolonged crystal growth in cold precursors, a large grain and highly oriented FASnI3 film is obtained, resulting in an efficiency of 9.46%. This facile method is compatible with other strategies, yielding an efficiency of 12.11% after post‐treatment.</description><subject>Carrier mobility</subject><subject>Circuits</subject><subject>Crystal growth</subject><subject>Crystal structure</subject><subject>Crystallization</subject><subject>Current carriers</subject><subject>Energy conversion efficiency</subject><subject>Gibbs free energy</subject><subject>Grains</subject><subject>Materials science</subject><subject>micrometer‐scale grain size</subject><subject>Nucleation</subject><subject>oriented growth</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Precursors</subject><subject>Solar cells</subject><subject>temperature control</subject><subject>tin perovskite solar cells</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kM1PAjEQxRujiYhePTfxvNrp5_ZIUJAEghFJvDVlt4vFZYvdXQn_vUswnOa9yW_mJQ-heyCPQAh9snmxfaSEdkYzuEA9kCATRmh6edbweY1u6npDCCjFeA8tZ_bbV2v8HsIWFyHicQz742Ievasal-PRYFFNGN775gtPbVy7DrG-qvGvt3gYyhy_RZe1se6OF6FsGx-qW3RV2LJ2d_-zj5ajl4_hazKdjyfDwTTZAU8h0QqEEpCBXuVEUg6MyYIrxigDIjRwyTOV5lAUcrUSotOpEs5KxbTgacZYHz2c_u5i-Gld3ZhNaGPVRRoqOKQagKYdpU_U3pfuYHbRb208GCDm2Js59mbOvZnB82h2duwPCJhgwg</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Cui, Danyu</creator><creator>Liu, Xiao</creator><creator>Wu, Tianhao</creator><creator>Lin, Xuesong</creator><creator>Luo, Xinhui</creator><creator>Wu, Yongzhen</creator><creator>Segawa, Hiroshi</creator><creator>Yang, Xudong</creator><creator>Zhang, Yiqiang</creator><creator>Wang, Yanbo</creator><creator>Han, Liyuan</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9766-9015</orcidid></search><sort><creationdate>20210601</creationdate><title>Making Room for Growing Oriented FASnI3 with Large Grains via Cold Precursor Solution</title><author>Cui, Danyu ; Liu, Xiao ; Wu, Tianhao ; Lin, Xuesong ; Luo, Xinhui ; Wu, Yongzhen ; Segawa, Hiroshi ; Yang, Xudong ; Zhang, Yiqiang ; Wang, Yanbo ; Han, Liyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1481-9715751c19bd06241336f47332310591464c78d1ff6bb55c78875ea6739548c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Carrier mobility</topic><topic>Circuits</topic><topic>Crystal growth</topic><topic>Crystal structure</topic><topic>Crystallization</topic><topic>Current carriers</topic><topic>Energy conversion efficiency</topic><topic>Gibbs free energy</topic><topic>Grains</topic><topic>Materials science</topic><topic>micrometer‐scale grain size</topic><topic>Nucleation</topic><topic>oriented growth</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Precursors</topic><topic>Solar cells</topic><topic>temperature control</topic><topic>tin perovskite solar cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cui, Danyu</creatorcontrib><creatorcontrib>Liu, Xiao</creatorcontrib><creatorcontrib>Wu, Tianhao</creatorcontrib><creatorcontrib>Lin, Xuesong</creatorcontrib><creatorcontrib>Luo, Xinhui</creatorcontrib><creatorcontrib>Wu, Yongzhen</creatorcontrib><creatorcontrib>Segawa, Hiroshi</creatorcontrib><creatorcontrib>Yang, Xudong</creatorcontrib><creatorcontrib>Zhang, Yiqiang</creatorcontrib><creatorcontrib>Wang, Yanbo</creatorcontrib><creatorcontrib>Han, Liyuan</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cui, Danyu</au><au>Liu, Xiao</au><au>Wu, Tianhao</au><au>Lin, Xuesong</au><au>Luo, Xinhui</au><au>Wu, Yongzhen</au><au>Segawa, Hiroshi</au><au>Yang, Xudong</au><au>Zhang, Yiqiang</au><au>Wang, Yanbo</au><au>Han, Liyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Making Room for Growing Oriented FASnI3 with Large Grains via Cold Precursor Solution</atitle><jtitle>Advanced functional materials</jtitle><date>2021-06-01</date><risdate>2021</risdate><volume>31</volume><issue>25</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Tin halide perovskites are promising candidates for preparing efficient lead‐free perovskite solar cells due to their ideal band gap and high charge‐carrier mobility. However, the notorious rapid crystallization process results in the inferior power conversion efficiency (PCE) of tin perovskite solar cells (TPSCs). Here, a facile method is employed to manage this crystallization process by using cold precursor solution that raises the critical Gibbs free energy to slow down the nucleation rate, sparing both space and time for crystal growth. In this way, highly oriented FASnI3 films with micrometer‐scale grains are fabricated and an increase of 70 mV in the open‐circuit voltage is obtained for TPSCs. This method is compatible with other existed strategies such as additive engineering or the post‐treatment method. The best‐performing device that combines 0 °C precursor solution and post‐treatment method demonstrates a PCE of 12.11%. The relationship between the temperature of the precursor and the crystallization process of FASnI3 is disclosed. Due to the suppressed nucleation rate and prolonged crystal growth in cold precursors, a large grain and highly oriented FASnI3 film is obtained, resulting in an efficiency of 9.46%. This facile method is compatible with other strategies, yielding an efficiency of 12.11% after post‐treatment.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202100931</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-9766-9015</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2021-06, Vol.31 (25), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2541891128
source Wiley
subjects Carrier mobility
Circuits
Crystal growth
Crystal structure
Crystallization
Current carriers
Energy conversion efficiency
Gibbs free energy
Grains
Materials science
micrometer‐scale grain size
Nucleation
oriented growth
Perovskites
Photovoltaic cells
Precursors
Solar cells
temperature control
tin perovskite solar cells
title Making Room for Growing Oriented FASnI3 with Large Grains via Cold Precursor Solution
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A40%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Making%20Room%20for%20Growing%20Oriented%20FASnI3%20with%20Large%20Grains%20via%20Cold%20Precursor%20Solution&rft.jtitle=Advanced%20functional%20materials&rft.au=Cui,%20Danyu&rft.date=2021-06-01&rft.volume=31&rft.issue=25&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202100931&rft_dat=%3Cproquest_wiley%3E2541891128%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p1481-9715751c19bd06241336f47332310591464c78d1ff6bb55c78875ea6739548c33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2541891128&rft_id=info:pmid/&rfr_iscdi=true