Loading…
Optimization of Eucalyptus breeding through random regression models allowing for reaction norms in response to environmental gradients
Reaction norms fitted through random regression models are a powerful tool to identify and quantify the genotype × environment (G × E) interaction and they represent a promising alternative in forest tree breeding for analysis of multi-environment trials. Thus, the objective of this study was to com...
Saved in:
Published in: | Tree genetics & genomes 2020-04, Vol.16 (2), Article 38 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c277t-9b28aaf7b0238618a0047ddc13f35dad79f41751f77b6fd5aa5d03d9f180cb3e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c277t-9b28aaf7b0238618a0047ddc13f35dad79f41751f77b6fd5aa5d03d9f180cb3e3 |
container_end_page | |
container_issue | 2 |
container_start_page | |
container_title | Tree genetics & genomes |
container_volume | 16 |
creator | Alves, Rodrigo Silva de Resende, Marcos Deon Vilela Azevedo, Camila Ferreira Silva, Fabyano Fonseca e Rocha, João Romero do Amaral Santos de Carvalho Nunes, Andrei Caíque Pires Carneiro, Antônio Policarpo Souza dos Santos, Gleison Augusto |
description | Reaction norms fitted through random regression models are a powerful tool to identify and quantify the genotype × environment (G × E) interaction and they represent a promising alternative in forest tree breeding for analysis of multi-environment trials. Thus, the objective of this study was to compare random regression models with the compound symmetry model in
Eucalyptus
breeding for analysis of multi-environment trials. To this end, a data set with 215
Eucalyptus
clones of different species and hybrids evaluated in four environments for diameter at breast height and Pilodyn penetration was used. The random regression models provided a better fit for both traits. Results showed that there was genotypic variability among
Eucalyptus
clones and that the reaction norms over the environmental gradients identified the G × E interaction. The compound symmetry model and the random regression models are highly correlated in terms of genotype ranking for both traits. The main advantage of random regression models over the compound symmetry model is the ability to predict genotypic performance in environments where a genotype has not been evaluated. Thus, our results suggest that reaction norms fitted through random regression models can be successfully used in forest tree breeding for analysis of multi-environment trials. |
doi_str_mv | 10.1007/s11295-020-01431-5 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2542128065</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2542128065</sourcerecordid><originalsourceid>FETCH-LOGICAL-c277t-9b28aaf7b0238618a0047ddc13f35dad79f41751f77b6fd5aa5d03d9f180cb3e3</originalsourceid><addsrcrecordid>eNp9kctOwzAQRSMEEqXwA6wssQ74EcfJElXlIVXqBtaWE9upq8QOtgMqP8BvkxAEu65mNHPuHY1uklwjeIsgZHcBIVzSFGKYQpQRlNKTZIFylKXjGJ7-9Rk-Ty5C2EOYMZjni-Rr20fTmU8RjbPAabAeatEe-jgEUHmlpLENiDvvhmYHvLDSdcCrxqsQJkHnpGoDEG3rPiZSOz-uRf3jZp3vAjB2nITe2aBAdEDZd-Od7ZSNogWNF9KMbbhMzrRog7r6rcvk9WH9snpKN9vH59X9Jq0xYzEtK1wIoVkFMSlyVIjpESlrRDShUkhW6gwxijRjVa4lFYJKSGSpUQHriiiyTG5m3967t0GFyPdu8HY8yTHNMMIFzOlRihSUFpSU-Ujhmaq9C8ErzXtvOuEPHEE-xcLnWPgYC_-JhU_WZBaFEbaN8v_WR1TfDUSTOw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2385585396</pqid></control><display><type>article</type><title>Optimization of Eucalyptus breeding through random regression models allowing for reaction norms in response to environmental gradients</title><source>Springer Link</source><creator>Alves, Rodrigo Silva ; de Resende, Marcos Deon Vilela ; Azevedo, Camila Ferreira ; Silva, Fabyano Fonseca e ; Rocha, João Romero do Amaral Santos de Carvalho ; Nunes, Andrei Caíque Pires ; Carneiro, Antônio Policarpo Souza ; dos Santos, Gleison Augusto</creator><creatorcontrib>Alves, Rodrigo Silva ; de Resende, Marcos Deon Vilela ; Azevedo, Camila Ferreira ; Silva, Fabyano Fonseca e ; Rocha, João Romero do Amaral Santos de Carvalho ; Nunes, Andrei Caíque Pires ; Carneiro, Antônio Policarpo Souza ; dos Santos, Gleison Augusto</creatorcontrib><description>Reaction norms fitted through random regression models are a powerful tool to identify and quantify the genotype × environment (G × E) interaction and they represent a promising alternative in forest tree breeding for analysis of multi-environment trials. Thus, the objective of this study was to compare random regression models with the compound symmetry model in
Eucalyptus
breeding for analysis of multi-environment trials. To this end, a data set with 215
Eucalyptus
clones of different species and hybrids evaluated in four environments for diameter at breast height and Pilodyn penetration was used. The random regression models provided a better fit for both traits. Results showed that there was genotypic variability among
Eucalyptus
clones and that the reaction norms over the environmental gradients identified the G × E interaction. The compound symmetry model and the random regression models are highly correlated in terms of genotype ranking for both traits. The main advantage of random regression models over the compound symmetry model is the ability to predict genotypic performance in environments where a genotype has not been evaluated. Thus, our results suggest that reaction norms fitted through random regression models can be successfully used in forest tree breeding for analysis of multi-environment trials.</description><identifier>ISSN: 1614-2942</identifier><identifier>EISSN: 1614-2950</identifier><identifier>DOI: 10.1007/s11295-020-01431-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Biomedical and Life Sciences ; Biotechnology ; Breeding ; Environmental gradient ; Eucalyptus ; Forestry ; Genetic variability ; Genotype & phenotype ; Genotypes ; Hybrids ; Life Sciences ; Norms ; Optimization ; Original Article ; Plant breeding ; Plant Breeding/Biotechnology ; Plant Genetics and Genomics ; Regression analysis ; Regression models ; Symmetry ; Tree Biology</subject><ispartof>Tree genetics & genomes, 2020-04, Vol.16 (2), Article 38</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c277t-9b28aaf7b0238618a0047ddc13f35dad79f41751f77b6fd5aa5d03d9f180cb3e3</citedby><cites>FETCH-LOGICAL-c277t-9b28aaf7b0238618a0047ddc13f35dad79f41751f77b6fd5aa5d03d9f180cb3e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Alves, Rodrigo Silva</creatorcontrib><creatorcontrib>de Resende, Marcos Deon Vilela</creatorcontrib><creatorcontrib>Azevedo, Camila Ferreira</creatorcontrib><creatorcontrib>Silva, Fabyano Fonseca e</creatorcontrib><creatorcontrib>Rocha, João Romero do Amaral Santos de Carvalho</creatorcontrib><creatorcontrib>Nunes, Andrei Caíque Pires</creatorcontrib><creatorcontrib>Carneiro, Antônio Policarpo Souza</creatorcontrib><creatorcontrib>dos Santos, Gleison Augusto</creatorcontrib><title>Optimization of Eucalyptus breeding through random regression models allowing for reaction norms in response to environmental gradients</title><title>Tree genetics & genomes</title><addtitle>Tree Genetics & Genomes</addtitle><description>Reaction norms fitted through random regression models are a powerful tool to identify and quantify the genotype × environment (G × E) interaction and they represent a promising alternative in forest tree breeding for analysis of multi-environment trials. Thus, the objective of this study was to compare random regression models with the compound symmetry model in
Eucalyptus
breeding for analysis of multi-environment trials. To this end, a data set with 215
Eucalyptus
clones of different species and hybrids evaluated in four environments for diameter at breast height and Pilodyn penetration was used. The random regression models provided a better fit for both traits. Results showed that there was genotypic variability among
Eucalyptus
clones and that the reaction norms over the environmental gradients identified the G × E interaction. The compound symmetry model and the random regression models are highly correlated in terms of genotype ranking for both traits. The main advantage of random regression models over the compound symmetry model is the ability to predict genotypic performance in environments where a genotype has not been evaluated. Thus, our results suggest that reaction norms fitted through random regression models can be successfully used in forest tree breeding for analysis of multi-environment trials.</description><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Breeding</subject><subject>Environmental gradient</subject><subject>Eucalyptus</subject><subject>Forestry</subject><subject>Genetic variability</subject><subject>Genotype & phenotype</subject><subject>Genotypes</subject><subject>Hybrids</subject><subject>Life Sciences</subject><subject>Norms</subject><subject>Optimization</subject><subject>Original Article</subject><subject>Plant breeding</subject><subject>Plant Breeding/Biotechnology</subject><subject>Plant Genetics and Genomics</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Symmetry</subject><subject>Tree Biology</subject><issn>1614-2942</issn><issn>1614-2950</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kctOwzAQRSMEEqXwA6wssQ74EcfJElXlIVXqBtaWE9upq8QOtgMqP8BvkxAEu65mNHPuHY1uklwjeIsgZHcBIVzSFGKYQpQRlNKTZIFylKXjGJ7-9Rk-Ty5C2EOYMZjni-Rr20fTmU8RjbPAabAeatEe-jgEUHmlpLENiDvvhmYHvLDSdcCrxqsQJkHnpGoDEG3rPiZSOz-uRf3jZp3vAjB2nITe2aBAdEDZd-Od7ZSNogWNF9KMbbhMzrRog7r6rcvk9WH9snpKN9vH59X9Jq0xYzEtK1wIoVkFMSlyVIjpESlrRDShUkhW6gwxijRjVa4lFYJKSGSpUQHriiiyTG5m3967t0GFyPdu8HY8yTHNMMIFzOlRihSUFpSU-Ujhmaq9C8ErzXtvOuEPHEE-xcLnWPgYC_-JhU_WZBaFEbaN8v_WR1TfDUSTOw</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Alves, Rodrigo Silva</creator><creator>de Resende, Marcos Deon Vilela</creator><creator>Azevedo, Camila Ferreira</creator><creator>Silva, Fabyano Fonseca e</creator><creator>Rocha, João Romero do Amaral Santos de Carvalho</creator><creator>Nunes, Andrei Caíque Pires</creator><creator>Carneiro, Antônio Policarpo Souza</creator><creator>dos Santos, Gleison Augusto</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope></search><sort><creationdate>20200401</creationdate><title>Optimization of Eucalyptus breeding through random regression models allowing for reaction norms in response to environmental gradients</title><author>Alves, Rodrigo Silva ; de Resende, Marcos Deon Vilela ; Azevedo, Camila Ferreira ; Silva, Fabyano Fonseca e ; Rocha, João Romero do Amaral Santos de Carvalho ; Nunes, Andrei Caíque Pires ; Carneiro, Antônio Policarpo Souza ; dos Santos, Gleison Augusto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c277t-9b28aaf7b0238618a0047ddc13f35dad79f41751f77b6fd5aa5d03d9f180cb3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Breeding</topic><topic>Environmental gradient</topic><topic>Eucalyptus</topic><topic>Forestry</topic><topic>Genetic variability</topic><topic>Genotype & phenotype</topic><topic>Genotypes</topic><topic>Hybrids</topic><topic>Life Sciences</topic><topic>Norms</topic><topic>Optimization</topic><topic>Original Article</topic><topic>Plant breeding</topic><topic>Plant Breeding/Biotechnology</topic><topic>Plant Genetics and Genomics</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Symmetry</topic><topic>Tree Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alves, Rodrigo Silva</creatorcontrib><creatorcontrib>de Resende, Marcos Deon Vilela</creatorcontrib><creatorcontrib>Azevedo, Camila Ferreira</creatorcontrib><creatorcontrib>Silva, Fabyano Fonseca e</creatorcontrib><creatorcontrib>Rocha, João Romero do Amaral Santos de Carvalho</creatorcontrib><creatorcontrib>Nunes, Andrei Caíque Pires</creatorcontrib><creatorcontrib>Carneiro, Antônio Policarpo Souza</creatorcontrib><creatorcontrib>dos Santos, Gleison Augusto</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><jtitle>Tree genetics & genomes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alves, Rodrigo Silva</au><au>de Resende, Marcos Deon Vilela</au><au>Azevedo, Camila Ferreira</au><au>Silva, Fabyano Fonseca e</au><au>Rocha, João Romero do Amaral Santos de Carvalho</au><au>Nunes, Andrei Caíque Pires</au><au>Carneiro, Antônio Policarpo Souza</au><au>dos Santos, Gleison Augusto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of Eucalyptus breeding through random regression models allowing for reaction norms in response to environmental gradients</atitle><jtitle>Tree genetics & genomes</jtitle><stitle>Tree Genetics & Genomes</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>16</volume><issue>2</issue><artnum>38</artnum><issn>1614-2942</issn><eissn>1614-2950</eissn><abstract>Reaction norms fitted through random regression models are a powerful tool to identify and quantify the genotype × environment (G × E) interaction and they represent a promising alternative in forest tree breeding for analysis of multi-environment trials. Thus, the objective of this study was to compare random regression models with the compound symmetry model in
Eucalyptus
breeding for analysis of multi-environment trials. To this end, a data set with 215
Eucalyptus
clones of different species and hybrids evaluated in four environments for diameter at breast height and Pilodyn penetration was used. The random regression models provided a better fit for both traits. Results showed that there was genotypic variability among
Eucalyptus
clones and that the reaction norms over the environmental gradients identified the G × E interaction. The compound symmetry model and the random regression models are highly correlated in terms of genotype ranking for both traits. The main advantage of random regression models over the compound symmetry model is the ability to predict genotypic performance in environments where a genotype has not been evaluated. Thus, our results suggest that reaction norms fitted through random regression models can be successfully used in forest tree breeding for analysis of multi-environment trials.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11295-020-01431-5</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1614-2942 |
ispartof | Tree genetics & genomes, 2020-04, Vol.16 (2), Article 38 |
issn | 1614-2942 1614-2950 |
language | eng |
recordid | cdi_proquest_journals_2542128065 |
source | Springer Link |
subjects | Biomedical and Life Sciences Biotechnology Breeding Environmental gradient Eucalyptus Forestry Genetic variability Genotype & phenotype Genotypes Hybrids Life Sciences Norms Optimization Original Article Plant breeding Plant Breeding/Biotechnology Plant Genetics and Genomics Regression analysis Regression models Symmetry Tree Biology |
title | Optimization of Eucalyptus breeding through random regression models allowing for reaction norms in response to environmental gradients |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T09%3A28%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20Eucalyptus%20breeding%20through%20random%20regression%20models%20allowing%20for%20reaction%20norms%20in%20response%20to%20environmental%20gradients&rft.jtitle=Tree%20genetics%20&%20genomes&rft.au=Alves,%20Rodrigo%20Silva&rft.date=2020-04-01&rft.volume=16&rft.issue=2&rft.artnum=38&rft.issn=1614-2942&rft.eissn=1614-2950&rft_id=info:doi/10.1007/s11295-020-01431-5&rft_dat=%3Cproquest_cross%3E2542128065%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c277t-9b28aaf7b0238618a0047ddc13f35dad79f41751f77b6fd5aa5d03d9f180cb3e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2385585396&rft_id=info:pmid/&rfr_iscdi=true |