Loading…

Optimization of Eucalyptus breeding through random regression models allowing for reaction norms in response to environmental gradients

Reaction norms fitted through random regression models are a powerful tool to identify and quantify the genotype × environment (G × E) interaction and they represent a promising alternative in forest tree breeding for analysis of multi-environment trials. Thus, the objective of this study was to com...

Full description

Saved in:
Bibliographic Details
Published in:Tree genetics & genomes 2020-04, Vol.16 (2), Article 38
Main Authors: Alves, Rodrigo Silva, de Resende, Marcos Deon Vilela, Azevedo, Camila Ferreira, Silva, Fabyano Fonseca e, Rocha, João Romero do Amaral Santos de Carvalho, Nunes, Andrei Caíque Pires, Carneiro, Antônio Policarpo Souza, dos Santos, Gleison Augusto
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c277t-9b28aaf7b0238618a0047ddc13f35dad79f41751f77b6fd5aa5d03d9f180cb3e3
cites cdi_FETCH-LOGICAL-c277t-9b28aaf7b0238618a0047ddc13f35dad79f41751f77b6fd5aa5d03d9f180cb3e3
container_end_page
container_issue 2
container_start_page
container_title Tree genetics & genomes
container_volume 16
creator Alves, Rodrigo Silva
de Resende, Marcos Deon Vilela
Azevedo, Camila Ferreira
Silva, Fabyano Fonseca e
Rocha, João Romero do Amaral Santos de Carvalho
Nunes, Andrei Caíque Pires
Carneiro, Antônio Policarpo Souza
dos Santos, Gleison Augusto
description Reaction norms fitted through random regression models are a powerful tool to identify and quantify the genotype × environment (G × E) interaction and they represent a promising alternative in forest tree breeding for analysis of multi-environment trials. Thus, the objective of this study was to compare random regression models with the compound symmetry model in Eucalyptus breeding for analysis of multi-environment trials. To this end, a data set with 215 Eucalyptus clones of different species and hybrids evaluated in four environments for diameter at breast height and Pilodyn penetration was used. The random regression models provided a better fit for both traits. Results showed that there was genotypic variability among Eucalyptus clones and that the reaction norms over the environmental gradients identified the G × E interaction. The compound symmetry model and the random regression models are highly correlated in terms of genotype ranking for both traits. The main advantage of random regression models over the compound symmetry model is the ability to predict genotypic performance in environments where a genotype has not been evaluated. Thus, our results suggest that reaction norms fitted through random regression models can be successfully used in forest tree breeding for analysis of multi-environment trials.
doi_str_mv 10.1007/s11295-020-01431-5
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2542128065</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2542128065</sourcerecordid><originalsourceid>FETCH-LOGICAL-c277t-9b28aaf7b0238618a0047ddc13f35dad79f41751f77b6fd5aa5d03d9f180cb3e3</originalsourceid><addsrcrecordid>eNp9kctOwzAQRSMEEqXwA6wssQ74EcfJElXlIVXqBtaWE9upq8QOtgMqP8BvkxAEu65mNHPuHY1uklwjeIsgZHcBIVzSFGKYQpQRlNKTZIFylKXjGJ7-9Rk-Ty5C2EOYMZjni-Rr20fTmU8RjbPAabAeatEe-jgEUHmlpLENiDvvhmYHvLDSdcCrxqsQJkHnpGoDEG3rPiZSOz-uRf3jZp3vAjB2nITe2aBAdEDZd-Od7ZSNogWNF9KMbbhMzrRog7r6rcvk9WH9snpKN9vH59X9Jq0xYzEtK1wIoVkFMSlyVIjpESlrRDShUkhW6gwxijRjVa4lFYJKSGSpUQHriiiyTG5m3967t0GFyPdu8HY8yTHNMMIFzOlRihSUFpSU-Ujhmaq9C8ErzXtvOuEPHEE-xcLnWPgYC_-JhU_WZBaFEbaN8v_WR1TfDUSTOw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2385585396</pqid></control><display><type>article</type><title>Optimization of Eucalyptus breeding through random regression models allowing for reaction norms in response to environmental gradients</title><source>Springer Link</source><creator>Alves, Rodrigo Silva ; de Resende, Marcos Deon Vilela ; Azevedo, Camila Ferreira ; Silva, Fabyano Fonseca e ; Rocha, João Romero do Amaral Santos de Carvalho ; Nunes, Andrei Caíque Pires ; Carneiro, Antônio Policarpo Souza ; dos Santos, Gleison Augusto</creator><creatorcontrib>Alves, Rodrigo Silva ; de Resende, Marcos Deon Vilela ; Azevedo, Camila Ferreira ; Silva, Fabyano Fonseca e ; Rocha, João Romero do Amaral Santos de Carvalho ; Nunes, Andrei Caíque Pires ; Carneiro, Antônio Policarpo Souza ; dos Santos, Gleison Augusto</creatorcontrib><description>Reaction norms fitted through random regression models are a powerful tool to identify and quantify the genotype × environment (G × E) interaction and they represent a promising alternative in forest tree breeding for analysis of multi-environment trials. Thus, the objective of this study was to compare random regression models with the compound symmetry model in Eucalyptus breeding for analysis of multi-environment trials. To this end, a data set with 215 Eucalyptus clones of different species and hybrids evaluated in four environments for diameter at breast height and Pilodyn penetration was used. The random regression models provided a better fit for both traits. Results showed that there was genotypic variability among Eucalyptus clones and that the reaction norms over the environmental gradients identified the G × E interaction. The compound symmetry model and the random regression models are highly correlated in terms of genotype ranking for both traits. The main advantage of random regression models over the compound symmetry model is the ability to predict genotypic performance in environments where a genotype has not been evaluated. Thus, our results suggest that reaction norms fitted through random regression models can be successfully used in forest tree breeding for analysis of multi-environment trials.</description><identifier>ISSN: 1614-2942</identifier><identifier>EISSN: 1614-2950</identifier><identifier>DOI: 10.1007/s11295-020-01431-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Biomedical and Life Sciences ; Biotechnology ; Breeding ; Environmental gradient ; Eucalyptus ; Forestry ; Genetic variability ; Genotype &amp; phenotype ; Genotypes ; Hybrids ; Life Sciences ; Norms ; Optimization ; Original Article ; Plant breeding ; Plant Breeding/Biotechnology ; Plant Genetics and Genomics ; Regression analysis ; Regression models ; Symmetry ; Tree Biology</subject><ispartof>Tree genetics &amp; genomes, 2020-04, Vol.16 (2), Article 38</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c277t-9b28aaf7b0238618a0047ddc13f35dad79f41751f77b6fd5aa5d03d9f180cb3e3</citedby><cites>FETCH-LOGICAL-c277t-9b28aaf7b0238618a0047ddc13f35dad79f41751f77b6fd5aa5d03d9f180cb3e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Alves, Rodrigo Silva</creatorcontrib><creatorcontrib>de Resende, Marcos Deon Vilela</creatorcontrib><creatorcontrib>Azevedo, Camila Ferreira</creatorcontrib><creatorcontrib>Silva, Fabyano Fonseca e</creatorcontrib><creatorcontrib>Rocha, João Romero do Amaral Santos de Carvalho</creatorcontrib><creatorcontrib>Nunes, Andrei Caíque Pires</creatorcontrib><creatorcontrib>Carneiro, Antônio Policarpo Souza</creatorcontrib><creatorcontrib>dos Santos, Gleison Augusto</creatorcontrib><title>Optimization of Eucalyptus breeding through random regression models allowing for reaction norms in response to environmental gradients</title><title>Tree genetics &amp; genomes</title><addtitle>Tree Genetics &amp; Genomes</addtitle><description>Reaction norms fitted through random regression models are a powerful tool to identify and quantify the genotype × environment (G × E) interaction and they represent a promising alternative in forest tree breeding for analysis of multi-environment trials. Thus, the objective of this study was to compare random regression models with the compound symmetry model in Eucalyptus breeding for analysis of multi-environment trials. To this end, a data set with 215 Eucalyptus clones of different species and hybrids evaluated in four environments for diameter at breast height and Pilodyn penetration was used. The random regression models provided a better fit for both traits. Results showed that there was genotypic variability among Eucalyptus clones and that the reaction norms over the environmental gradients identified the G × E interaction. The compound symmetry model and the random regression models are highly correlated in terms of genotype ranking for both traits. The main advantage of random regression models over the compound symmetry model is the ability to predict genotypic performance in environments where a genotype has not been evaluated. Thus, our results suggest that reaction norms fitted through random regression models can be successfully used in forest tree breeding for analysis of multi-environment trials.</description><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Breeding</subject><subject>Environmental gradient</subject><subject>Eucalyptus</subject><subject>Forestry</subject><subject>Genetic variability</subject><subject>Genotype &amp; phenotype</subject><subject>Genotypes</subject><subject>Hybrids</subject><subject>Life Sciences</subject><subject>Norms</subject><subject>Optimization</subject><subject>Original Article</subject><subject>Plant breeding</subject><subject>Plant Breeding/Biotechnology</subject><subject>Plant Genetics and Genomics</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Symmetry</subject><subject>Tree Biology</subject><issn>1614-2942</issn><issn>1614-2950</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kctOwzAQRSMEEqXwA6wssQ74EcfJElXlIVXqBtaWE9upq8QOtgMqP8BvkxAEu65mNHPuHY1uklwjeIsgZHcBIVzSFGKYQpQRlNKTZIFylKXjGJ7-9Rk-Ty5C2EOYMZjni-Rr20fTmU8RjbPAabAeatEe-jgEUHmlpLENiDvvhmYHvLDSdcCrxqsQJkHnpGoDEG3rPiZSOz-uRf3jZp3vAjB2nITe2aBAdEDZd-Od7ZSNogWNF9KMbbhMzrRog7r6rcvk9WH9snpKN9vH59X9Jq0xYzEtK1wIoVkFMSlyVIjpESlrRDShUkhW6gwxijRjVa4lFYJKSGSpUQHriiiyTG5m3967t0GFyPdu8HY8yTHNMMIFzOlRihSUFpSU-Ujhmaq9C8ErzXtvOuEPHEE-xcLnWPgYC_-JhU_WZBaFEbaN8v_WR1TfDUSTOw</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Alves, Rodrigo Silva</creator><creator>de Resende, Marcos Deon Vilela</creator><creator>Azevedo, Camila Ferreira</creator><creator>Silva, Fabyano Fonseca e</creator><creator>Rocha, João Romero do Amaral Santos de Carvalho</creator><creator>Nunes, Andrei Caíque Pires</creator><creator>Carneiro, Antônio Policarpo Souza</creator><creator>dos Santos, Gleison Augusto</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope></search><sort><creationdate>20200401</creationdate><title>Optimization of Eucalyptus breeding through random regression models allowing for reaction norms in response to environmental gradients</title><author>Alves, Rodrigo Silva ; de Resende, Marcos Deon Vilela ; Azevedo, Camila Ferreira ; Silva, Fabyano Fonseca e ; Rocha, João Romero do Amaral Santos de Carvalho ; Nunes, Andrei Caíque Pires ; Carneiro, Antônio Policarpo Souza ; dos Santos, Gleison Augusto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c277t-9b28aaf7b0238618a0047ddc13f35dad79f41751f77b6fd5aa5d03d9f180cb3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Breeding</topic><topic>Environmental gradient</topic><topic>Eucalyptus</topic><topic>Forestry</topic><topic>Genetic variability</topic><topic>Genotype &amp; phenotype</topic><topic>Genotypes</topic><topic>Hybrids</topic><topic>Life Sciences</topic><topic>Norms</topic><topic>Optimization</topic><topic>Original Article</topic><topic>Plant breeding</topic><topic>Plant Breeding/Biotechnology</topic><topic>Plant Genetics and Genomics</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Symmetry</topic><topic>Tree Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alves, Rodrigo Silva</creatorcontrib><creatorcontrib>de Resende, Marcos Deon Vilela</creatorcontrib><creatorcontrib>Azevedo, Camila Ferreira</creatorcontrib><creatorcontrib>Silva, Fabyano Fonseca e</creatorcontrib><creatorcontrib>Rocha, João Romero do Amaral Santos de Carvalho</creatorcontrib><creatorcontrib>Nunes, Andrei Caíque Pires</creatorcontrib><creatorcontrib>Carneiro, Antônio Policarpo Souza</creatorcontrib><creatorcontrib>dos Santos, Gleison Augusto</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><jtitle>Tree genetics &amp; genomes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alves, Rodrigo Silva</au><au>de Resende, Marcos Deon Vilela</au><au>Azevedo, Camila Ferreira</au><au>Silva, Fabyano Fonseca e</au><au>Rocha, João Romero do Amaral Santos de Carvalho</au><au>Nunes, Andrei Caíque Pires</au><au>Carneiro, Antônio Policarpo Souza</au><au>dos Santos, Gleison Augusto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of Eucalyptus breeding through random regression models allowing for reaction norms in response to environmental gradients</atitle><jtitle>Tree genetics &amp; genomes</jtitle><stitle>Tree Genetics &amp; Genomes</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>16</volume><issue>2</issue><artnum>38</artnum><issn>1614-2942</issn><eissn>1614-2950</eissn><abstract>Reaction norms fitted through random regression models are a powerful tool to identify and quantify the genotype × environment (G × E) interaction and they represent a promising alternative in forest tree breeding for analysis of multi-environment trials. Thus, the objective of this study was to compare random regression models with the compound symmetry model in Eucalyptus breeding for analysis of multi-environment trials. To this end, a data set with 215 Eucalyptus clones of different species and hybrids evaluated in four environments for diameter at breast height and Pilodyn penetration was used. The random regression models provided a better fit for both traits. Results showed that there was genotypic variability among Eucalyptus clones and that the reaction norms over the environmental gradients identified the G × E interaction. The compound symmetry model and the random regression models are highly correlated in terms of genotype ranking for both traits. The main advantage of random regression models over the compound symmetry model is the ability to predict genotypic performance in environments where a genotype has not been evaluated. Thus, our results suggest that reaction norms fitted through random regression models can be successfully used in forest tree breeding for analysis of multi-environment trials.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11295-020-01431-5</doi></addata></record>
fulltext fulltext
identifier ISSN: 1614-2942
ispartof Tree genetics & genomes, 2020-04, Vol.16 (2), Article 38
issn 1614-2942
1614-2950
language eng
recordid cdi_proquest_journals_2542128065
source Springer Link
subjects Biomedical and Life Sciences
Biotechnology
Breeding
Environmental gradient
Eucalyptus
Forestry
Genetic variability
Genotype & phenotype
Genotypes
Hybrids
Life Sciences
Norms
Optimization
Original Article
Plant breeding
Plant Breeding/Biotechnology
Plant Genetics and Genomics
Regression analysis
Regression models
Symmetry
Tree Biology
title Optimization of Eucalyptus breeding through random regression models allowing for reaction norms in response to environmental gradients
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T09%3A28%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20Eucalyptus%20breeding%20through%20random%20regression%20models%20allowing%20for%20reaction%20norms%20in%20response%20to%20environmental%20gradients&rft.jtitle=Tree%20genetics%20&%20genomes&rft.au=Alves,%20Rodrigo%20Silva&rft.date=2020-04-01&rft.volume=16&rft.issue=2&rft.artnum=38&rft.issn=1614-2942&rft.eissn=1614-2950&rft_id=info:doi/10.1007/s11295-020-01431-5&rft_dat=%3Cproquest_cross%3E2542128065%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c277t-9b28aaf7b0238618a0047ddc13f35dad79f41751f77b6fd5aa5d03d9f180cb3e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2385585396&rft_id=info:pmid/&rfr_iscdi=true