Loading…

A Feynman-Kac Type Theorem for ODEs: Solutions of Second Order ODEs as Modes of Diffusions

In this article, we prove a Feynman-Kac type result for a broad class of second order ordinary differential equations. The classical Feynman-Kac theorem says that the solution to a broad class of second order parabolic equations is the mean of a particular diffusion. In our situation, we show that t...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2021-06
Main Authors: Selk, Zachary, Honnappa, Harsha
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Selk, Zachary
Honnappa, Harsha
description In this article, we prove a Feynman-Kac type result for a broad class of second order ordinary differential equations. The classical Feynman-Kac theorem says that the solution to a broad class of second order parabolic equations is the mean of a particular diffusion. In our situation, we show that the solution to a system of second order ordinary differential equations is the mode of a diffusion, defined through the Onsager-Machlup formalism. One potential utility of our result is to use Monte Carlo type methods to estimate the solutions of ordinary differential equations. We conclude with examples of our result illustrating its utility in numerically solving linear second order ODEs.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2543473205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2543473205</sourcerecordid><originalsourceid>FETCH-proquest_journals_25434732053</originalsourceid><addsrcrecordid>eNqNys0KgkAUQOEhCJLyHS60FmxGM9pFKkGEi1y1kUHvkKJzbUYXvn2_D9DqLL4zYw4XYuPtAs4XzLW28X2fbyMehsJhtwOkOOlOau8sS8inHiG_IxnsQJGBLE7sHq7UjkNN2gIpuGJJuoLMVPh1kBYuVOFH41qp0b7fFZsr2Vp0f12ydZrkx5PXG3qMaIeiodHoFxU8DEQQCe6H4r_rCfDwQHU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2543473205</pqid></control><display><type>article</type><title>A Feynman-Kac Type Theorem for ODEs: Solutions of Second Order ODEs as Modes of Diffusions</title><source>Publicly Available Content (ProQuest)</source><creator>Selk, Zachary ; Honnappa, Harsha</creator><creatorcontrib>Selk, Zachary ; Honnappa, Harsha</creatorcontrib><description>In this article, we prove a Feynman-Kac type result for a broad class of second order ordinary differential equations. The classical Feynman-Kac theorem says that the solution to a broad class of second order parabolic equations is the mean of a particular diffusion. In our situation, we show that the solution to a system of second order ordinary differential equations is the mode of a diffusion, defined through the Onsager-Machlup formalism. One potential utility of our result is to use Monte Carlo type methods to estimate the solutions of ordinary differential equations. We conclude with examples of our result illustrating its utility in numerically solving linear second order ODEs.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Differential equations ; Monte Carlo simulation ; Ordinary differential equations ; Theorems</subject><ispartof>arXiv.org, 2021-06</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2543473205?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Selk, Zachary</creatorcontrib><creatorcontrib>Honnappa, Harsha</creatorcontrib><title>A Feynman-Kac Type Theorem for ODEs: Solutions of Second Order ODEs as Modes of Diffusions</title><title>arXiv.org</title><description>In this article, we prove a Feynman-Kac type result for a broad class of second order ordinary differential equations. The classical Feynman-Kac theorem says that the solution to a broad class of second order parabolic equations is the mean of a particular diffusion. In our situation, we show that the solution to a system of second order ordinary differential equations is the mode of a diffusion, defined through the Onsager-Machlup formalism. One potential utility of our result is to use Monte Carlo type methods to estimate the solutions of ordinary differential equations. We conclude with examples of our result illustrating its utility in numerically solving linear second order ODEs.</description><subject>Differential equations</subject><subject>Monte Carlo simulation</subject><subject>Ordinary differential equations</subject><subject>Theorems</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNys0KgkAUQOEhCJLyHS60FmxGM9pFKkGEi1y1kUHvkKJzbUYXvn2_D9DqLL4zYw4XYuPtAs4XzLW28X2fbyMehsJhtwOkOOlOau8sS8inHiG_IxnsQJGBLE7sHq7UjkNN2gIpuGJJuoLMVPh1kBYuVOFH41qp0b7fFZsr2Vp0f12ydZrkx5PXG3qMaIeiodHoFxU8DEQQCe6H4r_rCfDwQHU</recordid><startdate>20210619</startdate><enddate>20210619</enddate><creator>Selk, Zachary</creator><creator>Honnappa, Harsha</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20210619</creationdate><title>A Feynman-Kac Type Theorem for ODEs: Solutions of Second Order ODEs as Modes of Diffusions</title><author>Selk, Zachary ; Honnappa, Harsha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25434732053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Differential equations</topic><topic>Monte Carlo simulation</topic><topic>Ordinary differential equations</topic><topic>Theorems</topic><toplevel>online_resources</toplevel><creatorcontrib>Selk, Zachary</creatorcontrib><creatorcontrib>Honnappa, Harsha</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Selk, Zachary</au><au>Honnappa, Harsha</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A Feynman-Kac Type Theorem for ODEs: Solutions of Second Order ODEs as Modes of Diffusions</atitle><jtitle>arXiv.org</jtitle><date>2021-06-19</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>In this article, we prove a Feynman-Kac type result for a broad class of second order ordinary differential equations. The classical Feynman-Kac theorem says that the solution to a broad class of second order parabolic equations is the mean of a particular diffusion. In our situation, we show that the solution to a system of second order ordinary differential equations is the mode of a diffusion, defined through the Onsager-Machlup formalism. One potential utility of our result is to use Monte Carlo type methods to estimate the solutions of ordinary differential equations. We conclude with examples of our result illustrating its utility in numerically solving linear second order ODEs.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_2543473205
source Publicly Available Content (ProQuest)
subjects Differential equations
Monte Carlo simulation
Ordinary differential equations
Theorems
title A Feynman-Kac Type Theorem for ODEs: Solutions of Second Order ODEs as Modes of Diffusions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A38%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20Feynman-Kac%20Type%20Theorem%20for%20ODEs:%20Solutions%20of%20Second%20Order%20ODEs%20as%20Modes%20of%20Diffusions&rft.jtitle=arXiv.org&rft.au=Selk,%20Zachary&rft.date=2021-06-19&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2543473205%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_25434732053%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2543473205&rft_id=info:pmid/&rfr_iscdi=true