Loading…
A Feynman-Kac Type Theorem for ODEs: Solutions of Second Order ODEs as Modes of Diffusions
In this article, we prove a Feynman-Kac type result for a broad class of second order ordinary differential equations. The classical Feynman-Kac theorem says that the solution to a broad class of second order parabolic equations is the mean of a particular diffusion. In our situation, we show that t...
Saved in:
Published in: | arXiv.org 2021-06 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Selk, Zachary Honnappa, Harsha |
description | In this article, we prove a Feynman-Kac type result for a broad class of second order ordinary differential equations. The classical Feynman-Kac theorem says that the solution to a broad class of second order parabolic equations is the mean of a particular diffusion. In our situation, we show that the solution to a system of second order ordinary differential equations is the mode of a diffusion, defined through the Onsager-Machlup formalism. One potential utility of our result is to use Monte Carlo type methods to estimate the solutions of ordinary differential equations. We conclude with examples of our result illustrating its utility in numerically solving linear second order ODEs. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2543473205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2543473205</sourcerecordid><originalsourceid>FETCH-proquest_journals_25434732053</originalsourceid><addsrcrecordid>eNqNys0KgkAUQOEhCJLyHS60FmxGM9pFKkGEi1y1kUHvkKJzbUYXvn2_D9DqLL4zYw4XYuPtAs4XzLW28X2fbyMehsJhtwOkOOlOau8sS8inHiG_IxnsQJGBLE7sHq7UjkNN2gIpuGJJuoLMVPh1kBYuVOFH41qp0b7fFZsr2Vp0f12ydZrkx5PXG3qMaIeiodHoFxU8DEQQCe6H4r_rCfDwQHU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2543473205</pqid></control><display><type>article</type><title>A Feynman-Kac Type Theorem for ODEs: Solutions of Second Order ODEs as Modes of Diffusions</title><source>Publicly Available Content (ProQuest)</source><creator>Selk, Zachary ; Honnappa, Harsha</creator><creatorcontrib>Selk, Zachary ; Honnappa, Harsha</creatorcontrib><description>In this article, we prove a Feynman-Kac type result for a broad class of second order ordinary differential equations. The classical Feynman-Kac theorem says that the solution to a broad class of second order parabolic equations is the mean of a particular diffusion. In our situation, we show that the solution to a system of second order ordinary differential equations is the mode of a diffusion, defined through the Onsager-Machlup formalism. One potential utility of our result is to use Monte Carlo type methods to estimate the solutions of ordinary differential equations. We conclude with examples of our result illustrating its utility in numerically solving linear second order ODEs.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Differential equations ; Monte Carlo simulation ; Ordinary differential equations ; Theorems</subject><ispartof>arXiv.org, 2021-06</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2543473205?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Selk, Zachary</creatorcontrib><creatorcontrib>Honnappa, Harsha</creatorcontrib><title>A Feynman-Kac Type Theorem for ODEs: Solutions of Second Order ODEs as Modes of Diffusions</title><title>arXiv.org</title><description>In this article, we prove a Feynman-Kac type result for a broad class of second order ordinary differential equations. The classical Feynman-Kac theorem says that the solution to a broad class of second order parabolic equations is the mean of a particular diffusion. In our situation, we show that the solution to a system of second order ordinary differential equations is the mode of a diffusion, defined through the Onsager-Machlup formalism. One potential utility of our result is to use Monte Carlo type methods to estimate the solutions of ordinary differential equations. We conclude with examples of our result illustrating its utility in numerically solving linear second order ODEs.</description><subject>Differential equations</subject><subject>Monte Carlo simulation</subject><subject>Ordinary differential equations</subject><subject>Theorems</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNys0KgkAUQOEhCJLyHS60FmxGM9pFKkGEi1y1kUHvkKJzbUYXvn2_D9DqLL4zYw4XYuPtAs4XzLW28X2fbyMehsJhtwOkOOlOau8sS8inHiG_IxnsQJGBLE7sHq7UjkNN2gIpuGJJuoLMVPh1kBYuVOFH41qp0b7fFZsr2Vp0f12ydZrkx5PXG3qMaIeiodHoFxU8DEQQCe6H4r_rCfDwQHU</recordid><startdate>20210619</startdate><enddate>20210619</enddate><creator>Selk, Zachary</creator><creator>Honnappa, Harsha</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20210619</creationdate><title>A Feynman-Kac Type Theorem for ODEs: Solutions of Second Order ODEs as Modes of Diffusions</title><author>Selk, Zachary ; Honnappa, Harsha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25434732053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Differential equations</topic><topic>Monte Carlo simulation</topic><topic>Ordinary differential equations</topic><topic>Theorems</topic><toplevel>online_resources</toplevel><creatorcontrib>Selk, Zachary</creatorcontrib><creatorcontrib>Honnappa, Harsha</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Selk, Zachary</au><au>Honnappa, Harsha</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A Feynman-Kac Type Theorem for ODEs: Solutions of Second Order ODEs as Modes of Diffusions</atitle><jtitle>arXiv.org</jtitle><date>2021-06-19</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>In this article, we prove a Feynman-Kac type result for a broad class of second order ordinary differential equations. The classical Feynman-Kac theorem says that the solution to a broad class of second order parabolic equations is the mean of a particular diffusion. In our situation, we show that the solution to a system of second order ordinary differential equations is the mode of a diffusion, defined through the Onsager-Machlup formalism. One potential utility of our result is to use Monte Carlo type methods to estimate the solutions of ordinary differential equations. We conclude with examples of our result illustrating its utility in numerically solving linear second order ODEs.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2543473205 |
source | Publicly Available Content (ProQuest) |
subjects | Differential equations Monte Carlo simulation Ordinary differential equations Theorems |
title | A Feynman-Kac Type Theorem for ODEs: Solutions of Second Order ODEs as Modes of Diffusions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A38%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20Feynman-Kac%20Type%20Theorem%20for%20ODEs:%20Solutions%20of%20Second%20Order%20ODEs%20as%20Modes%20of%20Diffusions&rft.jtitle=arXiv.org&rft.au=Selk,%20Zachary&rft.date=2021-06-19&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2543473205%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_25434732053%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2543473205&rft_id=info:pmid/&rfr_iscdi=true |