Loading…

Rice Rhizospheric Effects on the Bioavailability of Toxic Trace Elements during Land Application of Biochar

Land application of biochar, the product of organic waste carbonization, can improve soil fertility as well as sequester carbon to mitigate climate change. In addition, biochar can greatly influence the bioavailability of toxic trace elements (TTEs) in soils resulting from its large internal surface...

Full description

Saved in:
Bibliographic Details
Published in:Environmental science & technology 2021-06, Vol.55 (11), p.7344-7354
Main Authors: Fang, Wen, Yang, Yi, Wang, Hailong, Yang, Danxing, Luo, Jun, Williams, Paul N
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Land application of biochar, the product of organic waste carbonization, can improve soil fertility as well as sequester carbon to mitigate climate change. In addition, biochar can greatly influence the bioavailability of toxic trace elements (TTEs) in soils resulting from its large internal surface areas, abundance in organic carbon, and ability to modify soil pH. Most research to date employs batch leaching tests to predict how biochar addition impacts TTE bioavailability, but these ex situ tests rarely considered the rhizospheric effect which might offset or intensify the changes induced by organic residue addition. This is especially so in rice rhizospheres because of strong clines in localized redox conditions. In this study, we adopted in situ high-resolution (HR) diffusive gradients in thin films (DGT) as well as rhizo-bag porewater sampling experiments to depict an overall picture of the difference in TTE (As, Cd, Cu, Ni, and Pb) bioavailability between the rice rhizosphere and bulk soils during land application of biochar. Porewater sampling experiments revealed that biochar additions stimulated TTE release due to the increase of dissolved organic carbon (DOC) and H+ concentrations. In the rhizosphere, although biochar still promoted As, Cd, and Ni release into porewaters, the rhizospheric effect was one of dampening/reduction compared with the bulk soil. When we focused on the localized changes of TTE bioavailability in the rhizosphere using an in situ HR-DGT approach, on the contrary, flux maxima of Cd, Cu, and Ni occurred near/on the root surface, and hot spots of As can be observed at peripheries of the rooting zone, which demonstrated the high heterogeneity and complexity of the rhizosphere’s influence on TTE bioavailability.
ISSN:0013-936X
1520-5851
DOI:10.1021/acs.est.0c07206