Loading…

Random additions in urns of integers

Consider an urn containing balls labeled with integer values. Define a discrete-time random process by drawing two balls, one at a time and with replacement, and noting the labels. Add a new ball labeled with the sum of the two drawn labels. This model was introduced by Siegmund and Yakir (2005) Ann...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied probability 2021-06, Vol.58 (2), p.335-346
Main Author: Simper, Mackenzie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c257t-1fd2f8542824e6976029b65760825f4b8fa20934ed892530136b56378ccbf193
container_end_page 346
container_issue 2
container_start_page 335
container_title Journal of applied probability
container_volume 58
creator Simper, Mackenzie
description Consider an urn containing balls labeled with integer values. Define a discrete-time random process by drawing two balls, one at a time and with replacement, and noting the labels. Add a new ball labeled with the sum of the two drawn labels. This model was introduced by Siegmund and Yakir (2005) Ann. Prob. 33, 2036 for labels taking values in a finite group, in which case the distribution defined by the urn converges to the uniform distribution on the group. For the urn of integers, the main result of this paper is an exponential limit law. The mean of the exponential is a random variable with distribution depending on the starting configuration. This is a novel urn model which combines multi-drawing and an infinite type of balls. The proof of convergence uses the contraction method for recursive distributional equations.
doi_str_mv 10.1017/jpr.2020.90
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2544027466</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jpr_2020_90</cupid><sourcerecordid>2544027466</sourcerecordid><originalsourceid>FETCH-LOGICAL-c257t-1fd2f8542824e6976029b65760825f4b8fa20934ed892530136b56378ccbf193</originalsourceid><addsrcrecordid>eNptkE1LxDAQhoMoWFdP_oGC3qR1Ms3nURa_YEGQvYe0TZYW-2HSPfjvzbILXrzMO4eHd4aHkFsKJQUqH_s5lAgIpYYzklEmeSFA4jnJAJAWOs1LchVjD0AZ1zIj9592bKcht23bLd00xrwb831IOfm0Lm7nQrwmF95-RXdzyhXZvjxv12_F5uP1ff20KRrkcimob9ErzlAhc0JLAahrwVMq5J7VylsEXTHXKo28AlqJmotKqqapPdXVitwda-cwfe9dXEw_pVfSRYOcMUDJhEjUw5FqwhRjcN7MoRts-DEUzMGCSRbMwYLRkOjiRNuhDl27c3-l__G_10hblw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2544027466</pqid></control><display><type>article</type><title>Random additions in urns of integers</title><source>Cambridge Journals Online</source><source>ABI/INFORM global</source><creator>Simper, Mackenzie</creator><creatorcontrib>Simper, Mackenzie</creatorcontrib><description>Consider an urn containing balls labeled with integer values. Define a discrete-time random process by drawing two balls, one at a time and with replacement, and noting the labels. Add a new ball labeled with the sum of the two drawn labels. This model was introduced by Siegmund and Yakir (2005) Ann. Prob. 33, 2036 for labels taking values in a finite group, in which case the distribution defined by the urn converges to the uniform distribution on the group. For the urn of integers, the main result of this paper is an exponential limit law. The mean of the exponential is a random variable with distribution depending on the starting configuration. This is a novel urn model which combines multi-drawing and an infinite type of balls. The proof of convergence uses the contraction method for recursive distributional equations.</description><identifier>ISSN: 0021-9002</identifier><identifier>EISSN: 1475-6072</identifier><identifier>DOI: 10.1017/jpr.2020.90</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Convergence ; Expected values ; Group theory ; Integers ; Labels ; Original Article ; Random processes ; Random variables</subject><ispartof>Journal of applied probability, 2021-06, Vol.58 (2), p.335-346</ispartof><rights>The Author(s), 2021. Published by Cambridge University Press on behalf of Applied Probability Trust</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c257t-1fd2f8542824e6976029b65760825f4b8fa20934ed892530136b56378ccbf193</cites><orcidid>0000-0002-7084-8395</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2544027466?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,44363,72960</link.rule.ids></links><search><creatorcontrib>Simper, Mackenzie</creatorcontrib><title>Random additions in urns of integers</title><title>Journal of applied probability</title><addtitle>J. Appl. Probab</addtitle><description>Consider an urn containing balls labeled with integer values. Define a discrete-time random process by drawing two balls, one at a time and with replacement, and noting the labels. Add a new ball labeled with the sum of the two drawn labels. This model was introduced by Siegmund and Yakir (2005) Ann. Prob. 33, 2036 for labels taking values in a finite group, in which case the distribution defined by the urn converges to the uniform distribution on the group. For the urn of integers, the main result of this paper is an exponential limit law. The mean of the exponential is a random variable with distribution depending on the starting configuration. This is a novel urn model which combines multi-drawing and an infinite type of balls. The proof of convergence uses the contraction method for recursive distributional equations.</description><subject>Convergence</subject><subject>Expected values</subject><subject>Group theory</subject><subject>Integers</subject><subject>Labels</subject><subject>Original Article</subject><subject>Random processes</subject><subject>Random variables</subject><issn>0021-9002</issn><issn>1475-6072</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNptkE1LxDAQhoMoWFdP_oGC3qR1Ms3nURa_YEGQvYe0TZYW-2HSPfjvzbILXrzMO4eHd4aHkFsKJQUqH_s5lAgIpYYzklEmeSFA4jnJAJAWOs1LchVjD0AZ1zIj9592bKcht23bLd00xrwb831IOfm0Lm7nQrwmF95-RXdzyhXZvjxv12_F5uP1ff20KRrkcimob9ErzlAhc0JLAahrwVMq5J7VylsEXTHXKo28AlqJmotKqqapPdXVitwda-cwfe9dXEw_pVfSRYOcMUDJhEjUw5FqwhRjcN7MoRts-DEUzMGCSRbMwYLRkOjiRNuhDl27c3-l__G_10hblw</recordid><startdate>202106</startdate><enddate>202106</enddate><creator>Simper, Mackenzie</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-7084-8395</orcidid></search><sort><creationdate>202106</creationdate><title>Random additions in urns of integers</title><author>Simper, Mackenzie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c257t-1fd2f8542824e6976029b65760825f4b8fa20934ed892530136b56378ccbf193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Convergence</topic><topic>Expected values</topic><topic>Group theory</topic><topic>Integers</topic><topic>Labels</topic><topic>Original Article</topic><topic>Random processes</topic><topic>Random variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Simper, Mackenzie</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer science database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM global</collection><collection>Computing Database</collection><collection>ProQuest research library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Simper, Mackenzie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Random additions in urns of integers</atitle><jtitle>Journal of applied probability</jtitle><addtitle>J. Appl. Probab</addtitle><date>2021-06</date><risdate>2021</risdate><volume>58</volume><issue>2</issue><spage>335</spage><epage>346</epage><pages>335-346</pages><issn>0021-9002</issn><eissn>1475-6072</eissn><abstract>Consider an urn containing balls labeled with integer values. Define a discrete-time random process by drawing two balls, one at a time and with replacement, and noting the labels. Add a new ball labeled with the sum of the two drawn labels. This model was introduced by Siegmund and Yakir (2005) Ann. Prob. 33, 2036 for labels taking values in a finite group, in which case the distribution defined by the urn converges to the uniform distribution on the group. For the urn of integers, the main result of this paper is an exponential limit law. The mean of the exponential is a random variable with distribution depending on the starting configuration. This is a novel urn model which combines multi-drawing and an infinite type of balls. The proof of convergence uses the contraction method for recursive distributional equations.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jpr.2020.90</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7084-8395</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9002
ispartof Journal of applied probability, 2021-06, Vol.58 (2), p.335-346
issn 0021-9002
1475-6072
language eng
recordid cdi_proquest_journals_2544027466
source Cambridge Journals Online; ABI/INFORM global
subjects Convergence
Expected values
Group theory
Integers
Labels
Original Article
Random processes
Random variables
title Random additions in urns of integers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A29%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Random%20additions%20in%20urns%20of%20integers&rft.jtitle=Journal%20of%20applied%20probability&rft.au=Simper,%20Mackenzie&rft.date=2021-06&rft.volume=58&rft.issue=2&rft.spage=335&rft.epage=346&rft.pages=335-346&rft.issn=0021-9002&rft.eissn=1475-6072&rft_id=info:doi/10.1017/jpr.2020.90&rft_dat=%3Cproquest_cross%3E2544027466%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c257t-1fd2f8542824e6976029b65760825f4b8fa20934ed892530136b56378ccbf193%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2544027466&rft_id=info:pmid/&rft_cupid=10_1017_jpr_2020_90&rfr_iscdi=true