Loading…

Bi-atomic classes of positive semirings

A subsemiring S of R is called a positive semiring provided that S consists of nonnegative numbers and 1 ∈ S . Here we study factorizations in both the additive monoid ( S , + ) and the multiplicative monoid ( S \ { 0 } , · ) . In particular, we investigate when, for a positive semiring S , both ( S...

Full description

Saved in:
Bibliographic Details
Published in:Semigroup forum 2021-08, Vol.103 (1), p.1-23
Main Authors: Baeth, Nicholas R., Chapman, Scott T., Gotti, Felix
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c363t-4f4c36ba9c9b07b331cd9c01b191e1ed395b0003800e51bfffdeacbc73d85d603
cites cdi_FETCH-LOGICAL-c363t-4f4c36ba9c9b07b331cd9c01b191e1ed395b0003800e51bfffdeacbc73d85d603
container_end_page 23
container_issue 1
container_start_page 1
container_title Semigroup forum
container_volume 103
creator Baeth, Nicholas R.
Chapman, Scott T.
Gotti, Felix
description A subsemiring S of R is called a positive semiring provided that S consists of nonnegative numbers and 1 ∈ S . Here we study factorizations in both the additive monoid ( S , + ) and the multiplicative monoid ( S \ { 0 } , · ) . In particular, we investigate when, for a positive semiring S , both ( S , + ) and ( S \ { 0 } , · ) have the following properties: atomicity, the ACCP, the bounded factorization property (BFP), the finite factorization property (FFP), and the half-factorial property (HFP). It is well known that in the context of cancellative and commutative monoids, the chain of implications HFP ⇒ BFP and FFP ⇒ BFP ⇒ ACCP ⇒ atomicity holds. Here we construct classes of positive semirings wherein both the additive and multiplicative structures satisfy each of these properties, and we also give examples to show that, in general, none of the implications in the previous chain is reversible.
doi_str_mv 10.1007/s00233-021-10189-8
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2544228487</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2544228487</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-4f4c36ba9c9b07b331cd9c01b191e1ed395b0003800e51bfffdeacbc73d85d603</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8FD56iM5l2mx5V_IIFL3oOTZpIlt1tzXQF_71ZK3jzNDPwfjCPEOcIVwhQXzOAIpKgUCKgbqQ-EDMsSUmFVB-KGQDVEhtUx-KEeQX5hgXNxOVtlO3Yb6Ir3Lpl9lz0oRh6jmP89AX7TUxx-86n4ii0a_Znv3Mu3h7uX--e5PLl8fnuZikdLWiUZSjzYtvGNRZqS4SuaxygzdUefUdNZffdGsBXaEMInW-ddTV1uuoWQHNxMeUOqf_YeR7Nqt-lba40qipLpXSp66xSk8qlnjn5YIYUN236MghmD8RMQEwGYn6AGJ1NNJl42L_k01_0P65v2PxiGw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2544228487</pqid></control><display><type>article</type><title>Bi-atomic classes of positive semirings</title><source>Springer Link</source><creator>Baeth, Nicholas R. ; Chapman, Scott T. ; Gotti, Felix</creator><creatorcontrib>Baeth, Nicholas R. ; Chapman, Scott T. ; Gotti, Felix</creatorcontrib><description>A subsemiring S of R is called a positive semiring provided that S consists of nonnegative numbers and 1 ∈ S . Here we study factorizations in both the additive monoid ( S , + ) and the multiplicative monoid ( S \ { 0 } , · ) . In particular, we investigate when, for a positive semiring S , both ( S , + ) and ( S \ { 0 } , · ) have the following properties: atomicity, the ACCP, the bounded factorization property (BFP), the finite factorization property (FFP), and the half-factorial property (HFP). It is well known that in the context of cancellative and commutative monoids, the chain of implications HFP ⇒ BFP and FFP ⇒ BFP ⇒ ACCP ⇒ atomicity holds. Here we construct classes of positive semirings wherein both the additive and multiplicative structures satisfy each of these properties, and we also give examples to show that, in general, none of the implications in the previous chain is reversible.</description><identifier>ISSN: 0037-1912</identifier><identifier>EISSN: 1432-2137</identifier><identifier>DOI: 10.1007/s00233-021-10189-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Chains ; Factorization ; Mathematics ; Mathematics and Statistics ; Monoids ; Research Article ; Rings (mathematics)</subject><ispartof>Semigroup forum, 2021-08, Vol.103 (1), p.1-23</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-4f4c36ba9c9b07b331cd9c01b191e1ed395b0003800e51bfffdeacbc73d85d603</citedby><cites>FETCH-LOGICAL-c363t-4f4c36ba9c9b07b331cd9c01b191e1ed395b0003800e51bfffdeacbc73d85d603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Baeth, Nicholas R.</creatorcontrib><creatorcontrib>Chapman, Scott T.</creatorcontrib><creatorcontrib>Gotti, Felix</creatorcontrib><title>Bi-atomic classes of positive semirings</title><title>Semigroup forum</title><addtitle>Semigroup Forum</addtitle><description>A subsemiring S of R is called a positive semiring provided that S consists of nonnegative numbers and 1 ∈ S . Here we study factorizations in both the additive monoid ( S , + ) and the multiplicative monoid ( S \ { 0 } , · ) . In particular, we investigate when, for a positive semiring S , both ( S , + ) and ( S \ { 0 } , · ) have the following properties: atomicity, the ACCP, the bounded factorization property (BFP), the finite factorization property (FFP), and the half-factorial property (HFP). It is well known that in the context of cancellative and commutative monoids, the chain of implications HFP ⇒ BFP and FFP ⇒ BFP ⇒ ACCP ⇒ atomicity holds. Here we construct classes of positive semirings wherein both the additive and multiplicative structures satisfy each of these properties, and we also give examples to show that, in general, none of the implications in the previous chain is reversible.</description><subject>Algebra</subject><subject>Chains</subject><subject>Factorization</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Monoids</subject><subject>Research Article</subject><subject>Rings (mathematics)</subject><issn>0037-1912</issn><issn>1432-2137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU8FD56iM5l2mx5V_IIFL3oOTZpIlt1tzXQF_71ZK3jzNDPwfjCPEOcIVwhQXzOAIpKgUCKgbqQ-EDMsSUmFVB-KGQDVEhtUx-KEeQX5hgXNxOVtlO3Yb6Ir3Lpl9lz0oRh6jmP89AX7TUxx-86n4ii0a_Znv3Mu3h7uX--e5PLl8fnuZikdLWiUZSjzYtvGNRZqS4SuaxygzdUefUdNZffdGsBXaEMInW-ddTV1uuoWQHNxMeUOqf_YeR7Nqt-lba40qipLpXSp66xSk8qlnjn5YIYUN236MghmD8RMQEwGYn6AGJ1NNJl42L_k01_0P65v2PxiGw</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Baeth, Nicholas R.</creator><creator>Chapman, Scott T.</creator><creator>Gotti, Felix</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210801</creationdate><title>Bi-atomic classes of positive semirings</title><author>Baeth, Nicholas R. ; Chapman, Scott T. ; Gotti, Felix</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-4f4c36ba9c9b07b331cd9c01b191e1ed395b0003800e51bfffdeacbc73d85d603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algebra</topic><topic>Chains</topic><topic>Factorization</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Monoids</topic><topic>Research Article</topic><topic>Rings (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baeth, Nicholas R.</creatorcontrib><creatorcontrib>Chapman, Scott T.</creatorcontrib><creatorcontrib>Gotti, Felix</creatorcontrib><collection>CrossRef</collection><jtitle>Semigroup forum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baeth, Nicholas R.</au><au>Chapman, Scott T.</au><au>Gotti, Felix</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bi-atomic classes of positive semirings</atitle><jtitle>Semigroup forum</jtitle><stitle>Semigroup Forum</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>103</volume><issue>1</issue><spage>1</spage><epage>23</epage><pages>1-23</pages><issn>0037-1912</issn><eissn>1432-2137</eissn><abstract>A subsemiring S of R is called a positive semiring provided that S consists of nonnegative numbers and 1 ∈ S . Here we study factorizations in both the additive monoid ( S , + ) and the multiplicative monoid ( S \ { 0 } , · ) . In particular, we investigate when, for a positive semiring S , both ( S , + ) and ( S \ { 0 } , · ) have the following properties: atomicity, the ACCP, the bounded factorization property (BFP), the finite factorization property (FFP), and the half-factorial property (HFP). It is well known that in the context of cancellative and commutative monoids, the chain of implications HFP ⇒ BFP and FFP ⇒ BFP ⇒ ACCP ⇒ atomicity holds. Here we construct classes of positive semirings wherein both the additive and multiplicative structures satisfy each of these properties, and we also give examples to show that, in general, none of the implications in the previous chain is reversible.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00233-021-10189-8</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0037-1912
ispartof Semigroup forum, 2021-08, Vol.103 (1), p.1-23
issn 0037-1912
1432-2137
language eng
recordid cdi_proquest_journals_2544228487
source Springer Link
subjects Algebra
Chains
Factorization
Mathematics
Mathematics and Statistics
Monoids
Research Article
Rings (mathematics)
title Bi-atomic classes of positive semirings
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A40%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bi-atomic%20classes%20of%20positive%20semirings&rft.jtitle=Semigroup%20forum&rft.au=Baeth,%20Nicholas%20R.&rft.date=2021-08-01&rft.volume=103&rft.issue=1&rft.spage=1&rft.epage=23&rft.pages=1-23&rft.issn=0037-1912&rft.eissn=1432-2137&rft_id=info:doi/10.1007/s00233-021-10189-8&rft_dat=%3Cproquest_cross%3E2544228487%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-4f4c36ba9c9b07b331cd9c01b191e1ed395b0003800e51bfffdeacbc73d85d603%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2544228487&rft_id=info:pmid/&rfr_iscdi=true