Loading…

Long Non-coding RNA Expression Profile in Broiler Liver with Cadmium-Induced Oxidative Damage

Cadmium pollution is serious heavy metal pollution in environmental pollution and impacts on livestock productivity. However, the effect and mechanisms of cadmium toxicity on the broiler remain unclear. This study aimed to explore the liver oxidative damage and reveal the related long non-coding RNA...

Full description

Saved in:
Bibliographic Details
Published in:Biological trace element research 2021-08, Vol.199 (8), p.3053-3061
Main Authors: Yu, Chunlin, Yang, Chaowu, Song, Xiaoyan, Li, Jingjing, Peng, Han, Qiu, Mohan, Yang, Li, Du, Huarui, Jiang, Xiaosong, Liu, Yiping
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cadmium pollution is serious heavy metal pollution in environmental pollution and impacts on livestock productivity. However, the effect and mechanisms of cadmium toxicity on the broiler remain unclear. This study aimed to explore the liver oxidative damage and reveal the related long non-coding RNA (lncRNA) expression patterns in the broiler liver with cadmium exposure. The broilers were fed with diets containing CdCl 2 and detected the oxidative stress indexes in the liver tissues. Transcriptome sequencing of broiler liver was performed to identify cadmium exposure-related differentially expressed lncRNAs (DElncRNAs). The functions and pathways of DElncRNAs were analyzed by GO and KEGG. The sequencing results were verified by the quantitative real-time polymerase chain reaction. Cadmium exposure induced tissue structure disorder, focal hemorrhage, and irregular hepatocytes in the broiler liver, and significantly decreased GSH level and enzyme activities, and increased MDA expression in the liver. A total of 74 DElncRNAs were obtained in cadmium group compared with the control group, which were enriched in the GO terms, including intrinsic apoptotic signaling pathway in response to DNA damage by p53 class mediator, branched-chain amino acid biosynthetic process. The enriched KEGG pathways, including lysine biosynthesis, valine, leucine and isoleucine biosynthesis, and pantothenate and CoA biosynthesis, were related to oxidative stress. PCR analysis indicated that the changes in ENSGALG00000053559, ENSGALG00000053926, and ENSGALG00000054404 expression were consistent with sequencing. Our results provide novel lncRNAs involved in oxidative stress in the broiler liver with cadmium exposure.
ISSN:0163-4984
1559-0720
DOI:10.1007/s12011-020-02436-w