Loading…

Model Selection and Regression t-Statistics

It is shown that dropping quantitative variables from a linear regression, based on t-statistics, is mathematically equivalent to dropping variables based on commonly used information criteria.

Saved in:
Bibliographic Details
Published in:The American statistician 2018-10, Vol.72 (4), p.379-381
Main Authors: Derryberry, DeWayne, Aho, Ken, Edwards, John, Peterson, Teri
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c360t-23b1cbd3ea19255c6ea4d5667f6d15b6a18d2093c9e1c23d16d44c69d89d951a3
cites cdi_FETCH-LOGICAL-c360t-23b1cbd3ea19255c6ea4d5667f6d15b6a18d2093c9e1c23d16d44c69d89d951a3
container_end_page 381
container_issue 4
container_start_page 379
container_title The American statistician
container_volume 72
creator Derryberry, DeWayne
Aho, Ken
Edwards, John
Peterson, Teri
description It is shown that dropping quantitative variables from a linear regression, based on t-statistics, is mathematically equivalent to dropping variables based on commonly used information criteria.
doi_str_mv 10.1080/00031305.2018.1459316
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2544347953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>45116988</jstor_id><sourcerecordid>45116988</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-23b1cbd3ea19255c6ea4d5667f6d15b6a18d2093c9e1c23d16d44c69d89d951a3</originalsourceid><addsrcrecordid>eNp9kE9LAzEUxIMoWKsfoVDwKFvz8pLs5qYU_0FFsHoOaZKVLdtNTVKk395dqh49PYb5zRsYQiZAZ0Arek0pRUAqZoxCNQMuFII8IiMQWBasRDgmo4EpBuiUnKW07iUtJRuRq-fgfDtd-tbb3IRuajo3ffUf0ac0yFwss8lNyo1N5-SkNm3yFz93TN7v797mj8Xi5eFpfrsoLEqaC4YrsCuH3oBiQljpDXdCyrKWDsRKGqgcowqt8mAZOpCOcyuVq5RTAgyOyeXh7zaGz51PWa_DLnZ9pWaCc-SlEthT4kDZGFKKvtbb2GxM3GugethF_-6ih130zy59bnLIrVMO8S_EBYBUVdX7Nwe_6eoQN-YrxNbpbPZtiHU0nW2Sxv8rvgGk8HEg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2544347953</pqid></control><display><type>article</type><title>Model Selection and Regression t-Statistics</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Taylor and Francis Science and Technology Collection</source><creator>Derryberry, DeWayne ; Aho, Ken ; Edwards, John ; Peterson, Teri</creator><creatorcontrib>Derryberry, DeWayne ; Aho, Ken ; Edwards, John ; Peterson, Teri</creatorcontrib><description>It is shown that dropping quantitative variables from a linear regression, based on t-statistics, is mathematically equivalent to dropping variables based on commonly used information criteria.</description><identifier>ISSN: 0003-1305</identifier><identifier>EISSN: 1537-2731</identifier><identifier>DOI: 10.1080/00031305.2018.1459316</identifier><language>eng</language><publisher>Alexandria: Taylor &amp; Francis</publisher><subject>Information criteria ; Linear regression ; Model selection ; Regression analysis ; Regression models ; SHORT TECHNICAL NOTES ; Statistical methods ; Statistics ; t-Statistics</subject><ispartof>The American statistician, 2018-10, Vol.72 (4), p.379-381</ispartof><rights>2018 American Statistical Association 2018</rights><rights>Copyright 2018 American Statistical Association</rights><rights>2018 American Statistical Association</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-23b1cbd3ea19255c6ea4d5667f6d15b6a18d2093c9e1c23d16d44c69d89d951a3</citedby><cites>FETCH-LOGICAL-c360t-23b1cbd3ea19255c6ea4d5667f6d15b6a18d2093c9e1c23d16d44c69d89d951a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/45116988$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/45116988$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,58213,58446</link.rule.ids></links><search><creatorcontrib>Derryberry, DeWayne</creatorcontrib><creatorcontrib>Aho, Ken</creatorcontrib><creatorcontrib>Edwards, John</creatorcontrib><creatorcontrib>Peterson, Teri</creatorcontrib><title>Model Selection and Regression t-Statistics</title><title>The American statistician</title><description>It is shown that dropping quantitative variables from a linear regression, based on t-statistics, is mathematically equivalent to dropping variables based on commonly used information criteria.</description><subject>Information criteria</subject><subject>Linear regression</subject><subject>Model selection</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>SHORT TECHNICAL NOTES</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>t-Statistics</subject><issn>0003-1305</issn><issn>1537-2731</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEUxIMoWKsfoVDwKFvz8pLs5qYU_0FFsHoOaZKVLdtNTVKk395dqh49PYb5zRsYQiZAZ0Arek0pRUAqZoxCNQMuFII8IiMQWBasRDgmo4EpBuiUnKW07iUtJRuRq-fgfDtd-tbb3IRuajo3ffUf0ac0yFwss8lNyo1N5-SkNm3yFz93TN7v797mj8Xi5eFpfrsoLEqaC4YrsCuH3oBiQljpDXdCyrKWDsRKGqgcowqt8mAZOpCOcyuVq5RTAgyOyeXh7zaGz51PWa_DLnZ9pWaCc-SlEthT4kDZGFKKvtbb2GxM3GugethF_-6ih130zy59bnLIrVMO8S_EBYBUVdX7Nwe_6eoQN-YrxNbpbPZtiHU0nW2Sxv8rvgGk8HEg</recordid><startdate>20181002</startdate><enddate>20181002</enddate><creator>Derryberry, DeWayne</creator><creator>Aho, Ken</creator><creator>Edwards, John</creator><creator>Peterson, Teri</creator><general>Taylor &amp; Francis</general><general>American Statistical Association</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20181002</creationdate><title>Model Selection and Regression t-Statistics</title><author>Derryberry, DeWayne ; Aho, Ken ; Edwards, John ; Peterson, Teri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-23b1cbd3ea19255c6ea4d5667f6d15b6a18d2093c9e1c23d16d44c69d89d951a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Information criteria</topic><topic>Linear regression</topic><topic>Model selection</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>SHORT TECHNICAL NOTES</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>t-Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Derryberry, DeWayne</creatorcontrib><creatorcontrib>Aho, Ken</creatorcontrib><creatorcontrib>Edwards, John</creatorcontrib><creatorcontrib>Peterson, Teri</creatorcontrib><collection>CrossRef</collection><jtitle>The American statistician</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Derryberry, DeWayne</au><au>Aho, Ken</au><au>Edwards, John</au><au>Peterson, Teri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model Selection and Regression t-Statistics</atitle><jtitle>The American statistician</jtitle><date>2018-10-02</date><risdate>2018</risdate><volume>72</volume><issue>4</issue><spage>379</spage><epage>381</epage><pages>379-381</pages><issn>0003-1305</issn><eissn>1537-2731</eissn><abstract>It is shown that dropping quantitative variables from a linear regression, based on t-statistics, is mathematically equivalent to dropping variables based on commonly used information criteria.</abstract><cop>Alexandria</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/00031305.2018.1459316</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-1305
ispartof The American statistician, 2018-10, Vol.72 (4), p.379-381
issn 0003-1305
1537-2731
language eng
recordid cdi_proquest_journals_2544347953
source JSTOR Archival Journals and Primary Sources Collection; Taylor and Francis Science and Technology Collection
subjects Information criteria
Linear regression
Model selection
Regression analysis
Regression models
SHORT TECHNICAL NOTES
Statistical methods
Statistics
t-Statistics
title Model Selection and Regression t-Statistics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T23%3A22%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model%20Selection%20and%20Regression%20t-Statistics&rft.jtitle=The%20American%20statistician&rft.au=Derryberry,%20DeWayne&rft.date=2018-10-02&rft.volume=72&rft.issue=4&rft.spage=379&rft.epage=381&rft.pages=379-381&rft.issn=0003-1305&rft.eissn=1537-2731&rft_id=info:doi/10.1080/00031305.2018.1459316&rft_dat=%3Cjstor_proqu%3E45116988%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c360t-23b1cbd3ea19255c6ea4d5667f6d15b6a18d2093c9e1c23d16d44c69d89d951a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2544347953&rft_id=info:pmid/&rft_jstor_id=45116988&rfr_iscdi=true