Loading…
Time-dependent Entanglement Entropy in Dissipative Conformal Theories: TFD Approach
In this work, the TFD formalism is explored in order to study a dissipative time-dependent thermal vacuum. This state is a consequence of a particular interaction between two theories, which can be interpreted as two conformal theories defined at the two asymptotic boundaries of an AdS black hole. T...
Saved in:
Published in: | Brazilian journal of physics 2021-08, Vol.51 (4), p.1145-1158 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c270t-c27c69c42db7214cf08fff879b5fbfd9952ab0d5a01c4883a01c91002450078d3 |
container_end_page | 1158 |
container_issue | 4 |
container_start_page | 1145 |
container_title | Brazilian journal of physics |
container_volume | 51 |
creator | Dias, M. Nedel, Daniel L. Senise Jr, C. R. |
description | In this work, the TFD formalism is explored in order to study a dissipative time-dependent thermal vacuum. This state is a consequence of a particular interaction between two theories, which can be interpreted as two conformal theories defined at the two asymptotic boundaries of an AdS black hole. The initial state is prepared to be the equilibrium TFD thermal vacuum. The interaction causes dissipation from the point of view of observers who measure observables in one of the boundaries. We show that the vacuum evolves as an entangled state at finite temperature and the dissipative dynamics is controlled by the time-dependent entropy operator, defined in the non-equilibrium TFD framework. We use lattice field theory techniques to calculate the non-equilibrium thermodynamic entropy and the finite temperature entanglement entropy. We show that both grow linearly with time. |
doi_str_mv | 10.1007/s13538-021-00934-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2544487124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2544487124</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-c27c69c42db7214cf08fff879b5fbfd9952ab0d5a01c4883a01c91002450078d3</originalsourceid><addsrcrecordid>eNp9UFtLwzAYDaLgnP4Bnwo-R79cuqS-jV1UGPhgfQ5pm2wda1qTTti_N7UD33z5Dh-cC-cgdE_gkQCIp0BYyiQGSjBAxjhmF2hCZkJizrm8RBMgwHAmGLtGNyHsAWgKnE3QR143BlemM64yrk9WrtduezDN-fFtd0pqlyzrEOpO9_W3SRats61v9CHJd6b1tQnPSb5eJvOu860ud7foyupDMHdnnKLP9SpfvOLN-8vbYr7BJRXQD7ecZSWnVSEo4aUFaa2VIitSW9gqy1KqC6hSDaTkUrIBs9iW8jRWlhWboofRN8Z-HU3o1b49ehcjFU2H3oJQHll0ZJW-DcEbqzpfN9qfFAE1jKfG8VQcT_2Op1gUsVEUItltjf-z_kf1A009cXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2544487124</pqid></control><display><type>article</type><title>Time-dependent Entanglement Entropy in Dissipative Conformal Theories: TFD Approach</title><source>Springer Nature</source><creator>Dias, M. ; Nedel, Daniel L. ; Senise Jr, C. R.</creator><creatorcontrib>Dias, M. ; Nedel, Daniel L. ; Senise Jr, C. R.</creatorcontrib><description>In this work, the TFD formalism is explored in order to study a dissipative time-dependent thermal vacuum. This state is a consequence of a particular interaction between two theories, which can be interpreted as two conformal theories defined at the two asymptotic boundaries of an AdS black hole. The initial state is prepared to be the equilibrium TFD thermal vacuum. The interaction causes dissipation from the point of view of observers who measure observables in one of the boundaries. We show that the vacuum evolves as an entangled state at finite temperature and the dissipative dynamics is controlled by the time-dependent entropy operator, defined in the non-equilibrium TFD framework. We use lattice field theory techniques to calculate the non-equilibrium thermodynamic entropy and the finite temperature entanglement entropy. We show that both grow linearly with time.</description><identifier>ISSN: 0103-9733</identifier><identifier>EISSN: 1678-4448</identifier><identifier>DOI: 10.1007/s13538-021-00934-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Boundaries ; Entangled states ; Entanglement ; Entropy ; Equilibrium ; Field theory ; Nonequilibrium thermodynamics ; Particles and Fields ; Physics ; Physics and Astronomy ; Thermodynamic equilibrium ; Time dependence</subject><ispartof>Brazilian journal of physics, 2021-08, Vol.51 (4), p.1145-1158</ispartof><rights>Sociedade Brasileira de Física 2021</rights><rights>Sociedade Brasileira de Física 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-c27c69c42db7214cf08fff879b5fbfd9952ab0d5a01c4883a01c91002450078d3</cites><orcidid>0000-0003-2242-523X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Dias, M.</creatorcontrib><creatorcontrib>Nedel, Daniel L.</creatorcontrib><creatorcontrib>Senise Jr, C. R.</creatorcontrib><title>Time-dependent Entanglement Entropy in Dissipative Conformal Theories: TFD Approach</title><title>Brazilian journal of physics</title><addtitle>Braz J Phys</addtitle><description>In this work, the TFD formalism is explored in order to study a dissipative time-dependent thermal vacuum. This state is a consequence of a particular interaction between two theories, which can be interpreted as two conformal theories defined at the two asymptotic boundaries of an AdS black hole. The initial state is prepared to be the equilibrium TFD thermal vacuum. The interaction causes dissipation from the point of view of observers who measure observables in one of the boundaries. We show that the vacuum evolves as an entangled state at finite temperature and the dissipative dynamics is controlled by the time-dependent entropy operator, defined in the non-equilibrium TFD framework. We use lattice field theory techniques to calculate the non-equilibrium thermodynamic entropy and the finite temperature entanglement entropy. We show that both grow linearly with time.</description><subject>Boundaries</subject><subject>Entangled states</subject><subject>Entanglement</subject><subject>Entropy</subject><subject>Equilibrium</subject><subject>Field theory</subject><subject>Nonequilibrium thermodynamics</subject><subject>Particles and Fields</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Thermodynamic equilibrium</subject><subject>Time dependence</subject><issn>0103-9733</issn><issn>1678-4448</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UFtLwzAYDaLgnP4Bnwo-R79cuqS-jV1UGPhgfQ5pm2wda1qTTti_N7UD33z5Dh-cC-cgdE_gkQCIp0BYyiQGSjBAxjhmF2hCZkJizrm8RBMgwHAmGLtGNyHsAWgKnE3QR143BlemM64yrk9WrtduezDN-fFtd0pqlyzrEOpO9_W3SRats61v9CHJd6b1tQnPSb5eJvOu860ud7foyupDMHdnnKLP9SpfvOLN-8vbYr7BJRXQD7ecZSWnVSEo4aUFaa2VIitSW9gqy1KqC6hSDaTkUrIBs9iW8jRWlhWboofRN8Z-HU3o1b49ehcjFU2H3oJQHll0ZJW-DcEbqzpfN9qfFAE1jKfG8VQcT_2Op1gUsVEUItltjf-z_kf1A009cXg</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Dias, M.</creator><creator>Nedel, Daniel L.</creator><creator>Senise Jr, C. R.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2242-523X</orcidid></search><sort><creationdate>20210801</creationdate><title>Time-dependent Entanglement Entropy in Dissipative Conformal Theories: TFD Approach</title><author>Dias, M. ; Nedel, Daniel L. ; Senise Jr, C. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-c27c69c42db7214cf08fff879b5fbfd9952ab0d5a01c4883a01c91002450078d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Boundaries</topic><topic>Entangled states</topic><topic>Entanglement</topic><topic>Entropy</topic><topic>Equilibrium</topic><topic>Field theory</topic><topic>Nonequilibrium thermodynamics</topic><topic>Particles and Fields</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Thermodynamic equilibrium</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dias, M.</creatorcontrib><creatorcontrib>Nedel, Daniel L.</creatorcontrib><creatorcontrib>Senise Jr, C. R.</creatorcontrib><collection>CrossRef</collection><jtitle>Brazilian journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dias, M.</au><au>Nedel, Daniel L.</au><au>Senise Jr, C. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time-dependent Entanglement Entropy in Dissipative Conformal Theories: TFD Approach</atitle><jtitle>Brazilian journal of physics</jtitle><stitle>Braz J Phys</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>51</volume><issue>4</issue><spage>1145</spage><epage>1158</epage><pages>1145-1158</pages><issn>0103-9733</issn><eissn>1678-4448</eissn><abstract>In this work, the TFD formalism is explored in order to study a dissipative time-dependent thermal vacuum. This state is a consequence of a particular interaction between two theories, which can be interpreted as two conformal theories defined at the two asymptotic boundaries of an AdS black hole. The initial state is prepared to be the equilibrium TFD thermal vacuum. The interaction causes dissipation from the point of view of observers who measure observables in one of the boundaries. We show that the vacuum evolves as an entangled state at finite temperature and the dissipative dynamics is controlled by the time-dependent entropy operator, defined in the non-equilibrium TFD framework. We use lattice field theory techniques to calculate the non-equilibrium thermodynamic entropy and the finite temperature entanglement entropy. We show that both grow linearly with time.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s13538-021-00934-3</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-2242-523X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0103-9733 |
ispartof | Brazilian journal of physics, 2021-08, Vol.51 (4), p.1145-1158 |
issn | 0103-9733 1678-4448 |
language | eng |
recordid | cdi_proquest_journals_2544487124 |
source | Springer Nature |
subjects | Boundaries Entangled states Entanglement Entropy Equilibrium Field theory Nonequilibrium thermodynamics Particles and Fields Physics Physics and Astronomy Thermodynamic equilibrium Time dependence |
title | Time-dependent Entanglement Entropy in Dissipative Conformal Theories: TFD Approach |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A57%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time-dependent%20Entanglement%20Entropy%20in%20Dissipative%20Conformal%20Theories:%20TFD%20Approach&rft.jtitle=Brazilian%20journal%20of%20physics&rft.au=Dias,%20M.&rft.date=2021-08-01&rft.volume=51&rft.issue=4&rft.spage=1145&rft.epage=1158&rft.pages=1145-1158&rft.issn=0103-9733&rft.eissn=1678-4448&rft_id=info:doi/10.1007/s13538-021-00934-3&rft_dat=%3Cproquest_cross%3E2544487124%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-c27c69c42db7214cf08fff879b5fbfd9952ab0d5a01c4883a01c91002450078d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2544487124&rft_id=info:pmid/&rfr_iscdi=true |