Loading…
Energy-Dependent Time-Resolved Photoluminescence of Self-Catalyzed InN Nanocolumns
In this study, we report the optical properties and carrier dynamics of different surface dimensionality n-type wurtzite InN with various carrier concentrations using photoluminescence (PL) and an energy-dependent, time-resolved photoluminescence (ED-TRPL) analysis. Experimental results indicated th...
Saved in:
Published in: | Catalysts 2021-06, Vol.11 (6), p.737 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c304t-cd44edd5d7c8df85ead19a49630626e07fa510bcaac07737cf17e0e5f7cb5cdf3 |
---|---|
cites | cdi_FETCH-LOGICAL-c304t-cd44edd5d7c8df85ead19a49630626e07fa510bcaac07737cf17e0e5f7cb5cdf3 |
container_end_page | |
container_issue | 6 |
container_start_page | 737 |
container_title | Catalysts |
container_volume | 11 |
creator | Lai, Fang-I Yang, Jui-Fu Chen, Wei-Chun Hsieh, Dan-Hua Lin, Woei-Tyng Hsu, Yu-Chao Kuo, Shou-Yi |
description | In this study, we report the optical properties and carrier dynamics of different surface dimensionality n-type wurtzite InN with various carrier concentrations using photoluminescence (PL) and an energy-dependent, time-resolved photoluminescence (ED-TRPL) analysis. Experimental results indicated that the InN morphology can be controlled by the growth temperature, from one-dimensional (1D) nanorods to two-dimensional (2D) films. Moreover, donor-like nitrogen vacancy (VN) is responsible for the increase in carrier concentration due to the lowest formation energies in the n-type InN samples. The PL results also reveal that the energies of emission peaks are higher in the InN samples with 2D features than that with 1D features. These anomalous transitions are explained as the recombination of Mahan excitons and localized holes, and further proved by a theoretical model, activation energy and photon energy-dependent lifetime analysis. |
doi_str_mv | 10.3390/catal11060737 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2544622678</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2544622678</sourcerecordid><originalsourceid>FETCH-LOGICAL-c304t-cd44edd5d7c8df85ead19a49630626e07fa510bcaac07737cf17e0e5f7cb5cdf3</originalsourceid><addsrcrecordid>eNpVkEFLAzEUhIMoWGqP3hc8R5NNstk9Sq22UKrUel7Slxdt2SY12RXqr3dLPehcZg4fb3hDyDVnt0JU7A5MaxrOWcG00GdkkPdOpZDy_E--JKOUtqxXxUXJ1YAsJx7j-4E-4B69Rd9mq80O6RJTaL7QZi8foQ1Nt9t4TIAeMAsue8XG0fGx8PDdMzO_yBbGBziCPl2RC2eahKNfH5K3x8lqPKXz56fZ-H5OQTDZUrBSorXKaiitKxUayysjq0KwIi-QaWcUZ2swBpjufwLHNTJUTsNagXViSG5Od_cxfHaY2nobuuj7yjpXUhZ5Xuiyp-iJghhSiujqfdzsTDzUnNXH5ep_y4kf5JBivg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2544622678</pqid></control><display><type>article</type><title>Energy-Dependent Time-Resolved Photoluminescence of Self-Catalyzed InN Nanocolumns</title><source>Publicly Available Content Database</source><creator>Lai, Fang-I ; Yang, Jui-Fu ; Chen, Wei-Chun ; Hsieh, Dan-Hua ; Lin, Woei-Tyng ; Hsu, Yu-Chao ; Kuo, Shou-Yi</creator><creatorcontrib>Lai, Fang-I ; Yang, Jui-Fu ; Chen, Wei-Chun ; Hsieh, Dan-Hua ; Lin, Woei-Tyng ; Hsu, Yu-Chao ; Kuo, Shou-Yi</creatorcontrib><description>In this study, we report the optical properties and carrier dynamics of different surface dimensionality n-type wurtzite InN with various carrier concentrations using photoluminescence (PL) and an energy-dependent, time-resolved photoluminescence (ED-TRPL) analysis. Experimental results indicated that the InN morphology can be controlled by the growth temperature, from one-dimensional (1D) nanorods to two-dimensional (2D) films. Moreover, donor-like nitrogen vacancy (VN) is responsible for the increase in carrier concentration due to the lowest formation energies in the n-type InN samples. The PL results also reveal that the energies of emission peaks are higher in the InN samples with 2D features than that with 1D features. These anomalous transitions are explained as the recombination of Mahan excitons and localized holes, and further proved by a theoretical model, activation energy and photon energy-dependent lifetime analysis.</description><identifier>ISSN: 2073-4344</identifier><identifier>EISSN: 2073-4344</identifier><identifier>DOI: 10.3390/catal11060737</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Binding sites ; Carrier density ; Catalysts ; Chemical reactions ; Energy ; Excitons ; Free energy ; Heat of formation ; Indium ; Localization ; Morphology ; Nanorods ; Nitrogen ; Optical properties ; Photoluminescence ; Point defects ; Time dependence ; Wurtzite</subject><ispartof>Catalysts, 2021-06, Vol.11 (6), p.737</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c304t-cd44edd5d7c8df85ead19a49630626e07fa510bcaac07737cf17e0e5f7cb5cdf3</citedby><cites>FETCH-LOGICAL-c304t-cd44edd5d7c8df85ead19a49630626e07fa510bcaac07737cf17e0e5f7cb5cdf3</cites><orcidid>0000-0002-0731-418X ; 0000-0003-3733-8155 ; 0000-0002-8541-4047</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2544622678/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2544622678?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,44589,74897</link.rule.ids></links><search><creatorcontrib>Lai, Fang-I</creatorcontrib><creatorcontrib>Yang, Jui-Fu</creatorcontrib><creatorcontrib>Chen, Wei-Chun</creatorcontrib><creatorcontrib>Hsieh, Dan-Hua</creatorcontrib><creatorcontrib>Lin, Woei-Tyng</creatorcontrib><creatorcontrib>Hsu, Yu-Chao</creatorcontrib><creatorcontrib>Kuo, Shou-Yi</creatorcontrib><title>Energy-Dependent Time-Resolved Photoluminescence of Self-Catalyzed InN Nanocolumns</title><title>Catalysts</title><description>In this study, we report the optical properties and carrier dynamics of different surface dimensionality n-type wurtzite InN with various carrier concentrations using photoluminescence (PL) and an energy-dependent, time-resolved photoluminescence (ED-TRPL) analysis. Experimental results indicated that the InN morphology can be controlled by the growth temperature, from one-dimensional (1D) nanorods to two-dimensional (2D) films. Moreover, donor-like nitrogen vacancy (VN) is responsible for the increase in carrier concentration due to the lowest formation energies in the n-type InN samples. The PL results also reveal that the energies of emission peaks are higher in the InN samples with 2D features than that with 1D features. These anomalous transitions are explained as the recombination of Mahan excitons and localized holes, and further proved by a theoretical model, activation energy and photon energy-dependent lifetime analysis.</description><subject>Binding sites</subject><subject>Carrier density</subject><subject>Catalysts</subject><subject>Chemical reactions</subject><subject>Energy</subject><subject>Excitons</subject><subject>Free energy</subject><subject>Heat of formation</subject><subject>Indium</subject><subject>Localization</subject><subject>Morphology</subject><subject>Nanorods</subject><subject>Nitrogen</subject><subject>Optical properties</subject><subject>Photoluminescence</subject><subject>Point defects</subject><subject>Time dependence</subject><subject>Wurtzite</subject><issn>2073-4344</issn><issn>2073-4344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpVkEFLAzEUhIMoWGqP3hc8R5NNstk9Sq22UKrUel7Slxdt2SY12RXqr3dLPehcZg4fb3hDyDVnt0JU7A5MaxrOWcG00GdkkPdOpZDy_E--JKOUtqxXxUXJ1YAsJx7j-4E-4B69Rd9mq80O6RJTaL7QZi8foQ1Nt9t4TIAeMAsue8XG0fGx8PDdMzO_yBbGBziCPl2RC2eahKNfH5K3x8lqPKXz56fZ-H5OQTDZUrBSorXKaiitKxUayysjq0KwIi-QaWcUZ2swBpjufwLHNTJUTsNagXViSG5Od_cxfHaY2nobuuj7yjpXUhZ5Xuiyp-iJghhSiujqfdzsTDzUnNXH5ep_y4kf5JBivg</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Lai, Fang-I</creator><creator>Yang, Jui-Fu</creator><creator>Chen, Wei-Chun</creator><creator>Hsieh, Dan-Hua</creator><creator>Lin, Woei-Tyng</creator><creator>Hsu, Yu-Chao</creator><creator>Kuo, Shou-Yi</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-0731-418X</orcidid><orcidid>https://orcid.org/0000-0003-3733-8155</orcidid><orcidid>https://orcid.org/0000-0002-8541-4047</orcidid></search><sort><creationdate>20210601</creationdate><title>Energy-Dependent Time-Resolved Photoluminescence of Self-Catalyzed InN Nanocolumns</title><author>Lai, Fang-I ; Yang, Jui-Fu ; Chen, Wei-Chun ; Hsieh, Dan-Hua ; Lin, Woei-Tyng ; Hsu, Yu-Chao ; Kuo, Shou-Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c304t-cd44edd5d7c8df85ead19a49630626e07fa510bcaac07737cf17e0e5f7cb5cdf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Binding sites</topic><topic>Carrier density</topic><topic>Catalysts</topic><topic>Chemical reactions</topic><topic>Energy</topic><topic>Excitons</topic><topic>Free energy</topic><topic>Heat of formation</topic><topic>Indium</topic><topic>Localization</topic><topic>Morphology</topic><topic>Nanorods</topic><topic>Nitrogen</topic><topic>Optical properties</topic><topic>Photoluminescence</topic><topic>Point defects</topic><topic>Time dependence</topic><topic>Wurtzite</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lai, Fang-I</creatorcontrib><creatorcontrib>Yang, Jui-Fu</creatorcontrib><creatorcontrib>Chen, Wei-Chun</creatorcontrib><creatorcontrib>Hsieh, Dan-Hua</creatorcontrib><creatorcontrib>Lin, Woei-Tyng</creatorcontrib><creatorcontrib>Hsu, Yu-Chao</creatorcontrib><creatorcontrib>Kuo, Shou-Yi</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Catalysts</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lai, Fang-I</au><au>Yang, Jui-Fu</au><au>Chen, Wei-Chun</au><au>Hsieh, Dan-Hua</au><au>Lin, Woei-Tyng</au><au>Hsu, Yu-Chao</au><au>Kuo, Shou-Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy-Dependent Time-Resolved Photoluminescence of Self-Catalyzed InN Nanocolumns</atitle><jtitle>Catalysts</jtitle><date>2021-06-01</date><risdate>2021</risdate><volume>11</volume><issue>6</issue><spage>737</spage><pages>737-</pages><issn>2073-4344</issn><eissn>2073-4344</eissn><abstract>In this study, we report the optical properties and carrier dynamics of different surface dimensionality n-type wurtzite InN with various carrier concentrations using photoluminescence (PL) and an energy-dependent, time-resolved photoluminescence (ED-TRPL) analysis. Experimental results indicated that the InN morphology can be controlled by the growth temperature, from one-dimensional (1D) nanorods to two-dimensional (2D) films. Moreover, donor-like nitrogen vacancy (VN) is responsible for the increase in carrier concentration due to the lowest formation energies in the n-type InN samples. The PL results also reveal that the energies of emission peaks are higher in the InN samples with 2D features than that with 1D features. These anomalous transitions are explained as the recombination of Mahan excitons and localized holes, and further proved by a theoretical model, activation energy and photon energy-dependent lifetime analysis.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/catal11060737</doi><orcidid>https://orcid.org/0000-0002-0731-418X</orcidid><orcidid>https://orcid.org/0000-0003-3733-8155</orcidid><orcidid>https://orcid.org/0000-0002-8541-4047</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4344 |
ispartof | Catalysts, 2021-06, Vol.11 (6), p.737 |
issn | 2073-4344 2073-4344 |
language | eng |
recordid | cdi_proquest_journals_2544622678 |
source | Publicly Available Content Database |
subjects | Binding sites Carrier density Catalysts Chemical reactions Energy Excitons Free energy Heat of formation Indium Localization Morphology Nanorods Nitrogen Optical properties Photoluminescence Point defects Time dependence Wurtzite |
title | Energy-Dependent Time-Resolved Photoluminescence of Self-Catalyzed InN Nanocolumns |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T01%3A05%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy-Dependent%20Time-Resolved%20Photoluminescence%20of%20Self-Catalyzed%20InN%20Nanocolumns&rft.jtitle=Catalysts&rft.au=Lai,%20Fang-I&rft.date=2021-06-01&rft.volume=11&rft.issue=6&rft.spage=737&rft.pages=737-&rft.issn=2073-4344&rft.eissn=2073-4344&rft_id=info:doi/10.3390/catal11060737&rft_dat=%3Cproquest_cross%3E2544622678%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c304t-cd44edd5d7c8df85ead19a49630626e07fa510bcaac07737cf17e0e5f7cb5cdf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2544622678&rft_id=info:pmid/&rfr_iscdi=true |