Loading…

Energy-Dependent Time-Resolved Photoluminescence of Self-Catalyzed InN Nanocolumns

In this study, we report the optical properties and carrier dynamics of different surface dimensionality n-type wurtzite InN with various carrier concentrations using photoluminescence (PL) and an energy-dependent, time-resolved photoluminescence (ED-TRPL) analysis. Experimental results indicated th...

Full description

Saved in:
Bibliographic Details
Published in:Catalysts 2021-06, Vol.11 (6), p.737
Main Authors: Lai, Fang-I, Yang, Jui-Fu, Chen, Wei-Chun, Hsieh, Dan-Hua, Lin, Woei-Tyng, Hsu, Yu-Chao, Kuo, Shou-Yi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c304t-cd44edd5d7c8df85ead19a49630626e07fa510bcaac07737cf17e0e5f7cb5cdf3
cites cdi_FETCH-LOGICAL-c304t-cd44edd5d7c8df85ead19a49630626e07fa510bcaac07737cf17e0e5f7cb5cdf3
container_end_page
container_issue 6
container_start_page 737
container_title Catalysts
container_volume 11
creator Lai, Fang-I
Yang, Jui-Fu
Chen, Wei-Chun
Hsieh, Dan-Hua
Lin, Woei-Tyng
Hsu, Yu-Chao
Kuo, Shou-Yi
description In this study, we report the optical properties and carrier dynamics of different surface dimensionality n-type wurtzite InN with various carrier concentrations using photoluminescence (PL) and an energy-dependent, time-resolved photoluminescence (ED-TRPL) analysis. Experimental results indicated that the InN morphology can be controlled by the growth temperature, from one-dimensional (1D) nanorods to two-dimensional (2D) films. Moreover, donor-like nitrogen vacancy (VN) is responsible for the increase in carrier concentration due to the lowest formation energies in the n-type InN samples. The PL results also reveal that the energies of emission peaks are higher in the InN samples with 2D features than that with 1D features. These anomalous transitions are explained as the recombination of Mahan excitons and localized holes, and further proved by a theoretical model, activation energy and photon energy-dependent lifetime analysis.
doi_str_mv 10.3390/catal11060737
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2544622678</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2544622678</sourcerecordid><originalsourceid>FETCH-LOGICAL-c304t-cd44edd5d7c8df85ead19a49630626e07fa510bcaac07737cf17e0e5f7cb5cdf3</originalsourceid><addsrcrecordid>eNpVkEFLAzEUhIMoWGqP3hc8R5NNstk9Sq22UKrUel7Slxdt2SY12RXqr3dLPehcZg4fb3hDyDVnt0JU7A5MaxrOWcG00GdkkPdOpZDy_E--JKOUtqxXxUXJ1YAsJx7j-4E-4B69Rd9mq80O6RJTaL7QZi8foQ1Nt9t4TIAeMAsue8XG0fGx8PDdMzO_yBbGBziCPl2RC2eahKNfH5K3x8lqPKXz56fZ-H5OQTDZUrBSorXKaiitKxUayysjq0KwIi-QaWcUZ2swBpjufwLHNTJUTsNagXViSG5Od_cxfHaY2nobuuj7yjpXUhZ5Xuiyp-iJghhSiujqfdzsTDzUnNXH5ep_y4kf5JBivg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2544622678</pqid></control><display><type>article</type><title>Energy-Dependent Time-Resolved Photoluminescence of Self-Catalyzed InN Nanocolumns</title><source>Publicly Available Content Database</source><creator>Lai, Fang-I ; Yang, Jui-Fu ; Chen, Wei-Chun ; Hsieh, Dan-Hua ; Lin, Woei-Tyng ; Hsu, Yu-Chao ; Kuo, Shou-Yi</creator><creatorcontrib>Lai, Fang-I ; Yang, Jui-Fu ; Chen, Wei-Chun ; Hsieh, Dan-Hua ; Lin, Woei-Tyng ; Hsu, Yu-Chao ; Kuo, Shou-Yi</creatorcontrib><description>In this study, we report the optical properties and carrier dynamics of different surface dimensionality n-type wurtzite InN with various carrier concentrations using photoluminescence (PL) and an energy-dependent, time-resolved photoluminescence (ED-TRPL) analysis. Experimental results indicated that the InN morphology can be controlled by the growth temperature, from one-dimensional (1D) nanorods to two-dimensional (2D) films. Moreover, donor-like nitrogen vacancy (VN) is responsible for the increase in carrier concentration due to the lowest formation energies in the n-type InN samples. The PL results also reveal that the energies of emission peaks are higher in the InN samples with 2D features than that with 1D features. These anomalous transitions are explained as the recombination of Mahan excitons and localized holes, and further proved by a theoretical model, activation energy and photon energy-dependent lifetime analysis.</description><identifier>ISSN: 2073-4344</identifier><identifier>EISSN: 2073-4344</identifier><identifier>DOI: 10.3390/catal11060737</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Binding sites ; Carrier density ; Catalysts ; Chemical reactions ; Energy ; Excitons ; Free energy ; Heat of formation ; Indium ; Localization ; Morphology ; Nanorods ; Nitrogen ; Optical properties ; Photoluminescence ; Point defects ; Time dependence ; Wurtzite</subject><ispartof>Catalysts, 2021-06, Vol.11 (6), p.737</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c304t-cd44edd5d7c8df85ead19a49630626e07fa510bcaac07737cf17e0e5f7cb5cdf3</citedby><cites>FETCH-LOGICAL-c304t-cd44edd5d7c8df85ead19a49630626e07fa510bcaac07737cf17e0e5f7cb5cdf3</cites><orcidid>0000-0002-0731-418X ; 0000-0003-3733-8155 ; 0000-0002-8541-4047</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2544622678/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2544622678?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,44589,74897</link.rule.ids></links><search><creatorcontrib>Lai, Fang-I</creatorcontrib><creatorcontrib>Yang, Jui-Fu</creatorcontrib><creatorcontrib>Chen, Wei-Chun</creatorcontrib><creatorcontrib>Hsieh, Dan-Hua</creatorcontrib><creatorcontrib>Lin, Woei-Tyng</creatorcontrib><creatorcontrib>Hsu, Yu-Chao</creatorcontrib><creatorcontrib>Kuo, Shou-Yi</creatorcontrib><title>Energy-Dependent Time-Resolved Photoluminescence of Self-Catalyzed InN Nanocolumns</title><title>Catalysts</title><description>In this study, we report the optical properties and carrier dynamics of different surface dimensionality n-type wurtzite InN with various carrier concentrations using photoluminescence (PL) and an energy-dependent, time-resolved photoluminescence (ED-TRPL) analysis. Experimental results indicated that the InN morphology can be controlled by the growth temperature, from one-dimensional (1D) nanorods to two-dimensional (2D) films. Moreover, donor-like nitrogen vacancy (VN) is responsible for the increase in carrier concentration due to the lowest formation energies in the n-type InN samples. The PL results also reveal that the energies of emission peaks are higher in the InN samples with 2D features than that with 1D features. These anomalous transitions are explained as the recombination of Mahan excitons and localized holes, and further proved by a theoretical model, activation energy and photon energy-dependent lifetime analysis.</description><subject>Binding sites</subject><subject>Carrier density</subject><subject>Catalysts</subject><subject>Chemical reactions</subject><subject>Energy</subject><subject>Excitons</subject><subject>Free energy</subject><subject>Heat of formation</subject><subject>Indium</subject><subject>Localization</subject><subject>Morphology</subject><subject>Nanorods</subject><subject>Nitrogen</subject><subject>Optical properties</subject><subject>Photoluminescence</subject><subject>Point defects</subject><subject>Time dependence</subject><subject>Wurtzite</subject><issn>2073-4344</issn><issn>2073-4344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpVkEFLAzEUhIMoWGqP3hc8R5NNstk9Sq22UKrUel7Slxdt2SY12RXqr3dLPehcZg4fb3hDyDVnt0JU7A5MaxrOWcG00GdkkPdOpZDy_E--JKOUtqxXxUXJ1YAsJx7j-4E-4B69Rd9mq80O6RJTaL7QZi8foQ1Nt9t4TIAeMAsue8XG0fGx8PDdMzO_yBbGBziCPl2RC2eahKNfH5K3x8lqPKXz56fZ-H5OQTDZUrBSorXKaiitKxUayysjq0KwIi-QaWcUZ2swBpjufwLHNTJUTsNagXViSG5Od_cxfHaY2nobuuj7yjpXUhZ5Xuiyp-iJghhSiujqfdzsTDzUnNXH5ep_y4kf5JBivg</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Lai, Fang-I</creator><creator>Yang, Jui-Fu</creator><creator>Chen, Wei-Chun</creator><creator>Hsieh, Dan-Hua</creator><creator>Lin, Woei-Tyng</creator><creator>Hsu, Yu-Chao</creator><creator>Kuo, Shou-Yi</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-0731-418X</orcidid><orcidid>https://orcid.org/0000-0003-3733-8155</orcidid><orcidid>https://orcid.org/0000-0002-8541-4047</orcidid></search><sort><creationdate>20210601</creationdate><title>Energy-Dependent Time-Resolved Photoluminescence of Self-Catalyzed InN Nanocolumns</title><author>Lai, Fang-I ; Yang, Jui-Fu ; Chen, Wei-Chun ; Hsieh, Dan-Hua ; Lin, Woei-Tyng ; Hsu, Yu-Chao ; Kuo, Shou-Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c304t-cd44edd5d7c8df85ead19a49630626e07fa510bcaac07737cf17e0e5f7cb5cdf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Binding sites</topic><topic>Carrier density</topic><topic>Catalysts</topic><topic>Chemical reactions</topic><topic>Energy</topic><topic>Excitons</topic><topic>Free energy</topic><topic>Heat of formation</topic><topic>Indium</topic><topic>Localization</topic><topic>Morphology</topic><topic>Nanorods</topic><topic>Nitrogen</topic><topic>Optical properties</topic><topic>Photoluminescence</topic><topic>Point defects</topic><topic>Time dependence</topic><topic>Wurtzite</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lai, Fang-I</creatorcontrib><creatorcontrib>Yang, Jui-Fu</creatorcontrib><creatorcontrib>Chen, Wei-Chun</creatorcontrib><creatorcontrib>Hsieh, Dan-Hua</creatorcontrib><creatorcontrib>Lin, Woei-Tyng</creatorcontrib><creatorcontrib>Hsu, Yu-Chao</creatorcontrib><creatorcontrib>Kuo, Shou-Yi</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Catalysts</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lai, Fang-I</au><au>Yang, Jui-Fu</au><au>Chen, Wei-Chun</au><au>Hsieh, Dan-Hua</au><au>Lin, Woei-Tyng</au><au>Hsu, Yu-Chao</au><au>Kuo, Shou-Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy-Dependent Time-Resolved Photoluminescence of Self-Catalyzed InN Nanocolumns</atitle><jtitle>Catalysts</jtitle><date>2021-06-01</date><risdate>2021</risdate><volume>11</volume><issue>6</issue><spage>737</spage><pages>737-</pages><issn>2073-4344</issn><eissn>2073-4344</eissn><abstract>In this study, we report the optical properties and carrier dynamics of different surface dimensionality n-type wurtzite InN with various carrier concentrations using photoluminescence (PL) and an energy-dependent, time-resolved photoluminescence (ED-TRPL) analysis. Experimental results indicated that the InN morphology can be controlled by the growth temperature, from one-dimensional (1D) nanorods to two-dimensional (2D) films. Moreover, donor-like nitrogen vacancy (VN) is responsible for the increase in carrier concentration due to the lowest formation energies in the n-type InN samples. The PL results also reveal that the energies of emission peaks are higher in the InN samples with 2D features than that with 1D features. These anomalous transitions are explained as the recombination of Mahan excitons and localized holes, and further proved by a theoretical model, activation energy and photon energy-dependent lifetime analysis.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/catal11060737</doi><orcidid>https://orcid.org/0000-0002-0731-418X</orcidid><orcidid>https://orcid.org/0000-0003-3733-8155</orcidid><orcidid>https://orcid.org/0000-0002-8541-4047</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4344
ispartof Catalysts, 2021-06, Vol.11 (6), p.737
issn 2073-4344
2073-4344
language eng
recordid cdi_proquest_journals_2544622678
source Publicly Available Content Database
subjects Binding sites
Carrier density
Catalysts
Chemical reactions
Energy
Excitons
Free energy
Heat of formation
Indium
Localization
Morphology
Nanorods
Nitrogen
Optical properties
Photoluminescence
Point defects
Time dependence
Wurtzite
title Energy-Dependent Time-Resolved Photoluminescence of Self-Catalyzed InN Nanocolumns
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T01%3A05%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy-Dependent%20Time-Resolved%20Photoluminescence%20of%20Self-Catalyzed%20InN%20Nanocolumns&rft.jtitle=Catalysts&rft.au=Lai,%20Fang-I&rft.date=2021-06-01&rft.volume=11&rft.issue=6&rft.spage=737&rft.pages=737-&rft.issn=2073-4344&rft.eissn=2073-4344&rft_id=info:doi/10.3390/catal11060737&rft_dat=%3Cproquest_cross%3E2544622678%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c304t-cd44edd5d7c8df85ead19a49630626e07fa510bcaac07737cf17e0e5f7cb5cdf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2544622678&rft_id=info:pmid/&rfr_iscdi=true