Loading…

Observer-based sliding mode control for piezoelectric wing bending-torsion coupling flutter involving delayed output

An observer-based sliding mode control scheme is proposed for suppressing bending-torsion coupling flutter motions of a wing aeroelastic system with delayed output by using the piezoelectric patch actuators. The wing structure is modeled as a thin-walled beam, and the aerodynamics on the wing are co...

Full description

Saved in:
Bibliographic Details
Published in:Journal of vibration and control 2021-08, Vol.27 (15-16), p.1824-1841
Main Authors: Li, Da, Yang, Hui, Qi, Na, Yuan, Jiaxin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An observer-based sliding mode control scheme is proposed for suppressing bending-torsion coupling flutter motions of a wing aeroelastic system with delayed output by using the piezoelectric patch actuators. The wing structure is modeled as a thin-walled beam, and the aerodynamics on the wing are computed by the strip theory. For the implementation of the control algorithm, the piezoelectric patch is bonded on the top surface of the beam to act as the actuator. Ignoring the effect of piezoelectric actuators on structural dynamics, only considering the bending moments induced by piezoelectric effects, the corresponding dynamic motion equation is established by using the Lagrange method with the assumed mode method. The flutter speed and frequency of the closed-loop system with time delay are obtained by solving a polynomial eigenvalue problem. An observer-based controller that does not dependent on time delay is developed for suppressing the flutter, and the corresponding gain matrices are obtained by solving linear matrix inequalities. The sufficient condition for the asymptotic stability of the closed-loop system is derived in terms of linear matrix inequalities. The simulation results demonstrate that the proposed control strategy based on the piezoelectric actuator is effective in wing bending-torsion coupling flutter system with a delayed output.
ISSN:1077-5463
1741-2986
DOI:10.1177/1077546320949122