Loading…

Reducing Conducted Emissions at the Output of Full-Bridge DCDC Converters with High Voltage Steps

In this work, we analyze the impact of output filter design techniques aimed to reduce conducted emissions at the output of a DCDC power converter. A thorough analysis, based on high-frequency circuit models of the converter, is performed to assess expected improvements offered by different design s...

Full description

Saved in:
Bibliographic Details
Published in:Electronics (Basel) 2021-06, Vol.10 (12), p.1373
Main Authors: González-Vizuete, Pablo, Bernal-Méndez, Joaquín, Martín-Prats, María A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this work, we analyze the impact of output filter design techniques aimed to reduce conducted emissions at the output of a DCDC power converter. A thorough analysis, based on high-frequency circuit models of the converter, is performed to assess expected improvements offered by different design strategies. This analysis is then confronted with measurements of conducted emissions at the output of a 300 W 48 V to 12 V Phase Shift Full Bridge (PSFB) prototype. Those experimental results demonstrate that a symmetric arrangement of the output LC filter and a direct bonding of the return output terminal of the converter to chassis are effective to reduce common mode conducted emissions at the output. Those results also demonstrate that the symmetry of the output LC filter can reduce conducted emissions in differential mode at high frequencies, where common mode to differential mode conversion is the predominant contribution to differential mode noise. However, direct bonding to chassis of the return output terminal may be ineffective at high frequencies due to the parasitic inductance associated with this connection. Main conclusions drawn for this analysis are applicable in general for isolated converters with a high voltage step between high and low voltage sides. Since the techniques of reduction of conducted emissions studied here do not increase the number of filter components, they are especially suitable for applications where high power density is an important requirement, e.g., aerospace or automotive applications.
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics10121373