Loading…

Detection and quantification of airborne spores from six important wheat fungal pathogens in southern Alberta

Wheat is affected by many fungal diseases that can cause severe yield and quality losses. Disease prediction models generally employ weather data to estimate potential for infection to determine timing for fungicide applications, but these models fail to account for the presence and quantity of path...

Full description

Saved in:
Bibliographic Details
Published in:Canadian journal of plant pathology 2021-05, Vol.43 (3), p.439-454
Main Authors: Araujo, Gabriela T., Amundsen, Eric, Frick, Michele, Gaudet, Denis A., Aboukhaddour, Reem, Selinger, Brent, Thomas, James, Laroche, André
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c338t-3fba3abcc2d166749941605dc50c04e71c0ebe3ee369cfaa756b32d16636a67d3
cites cdi_FETCH-LOGICAL-c338t-3fba3abcc2d166749941605dc50c04e71c0ebe3ee369cfaa756b32d16636a67d3
container_end_page 454
container_issue 3
container_start_page 439
container_title Canadian journal of plant pathology
container_volume 43
creator Araujo, Gabriela T.
Amundsen, Eric
Frick, Michele
Gaudet, Denis A.
Aboukhaddour, Reem
Selinger, Brent
Thomas, James
Laroche, André
description Wheat is affected by many fungal diseases that can cause severe yield and quality losses. Disease prediction models generally employ weather data to estimate potential for infection to determine timing for fungicide applications, but these models fail to account for the presence and quantity of pathogen inoculum. This study adapted highly specific qPCR primers to identify and quantify, in real-time, inoculum present in air for the six most important wheat pathogens in Canada. Fungal spores were collected using either Burkard spore collectors and quantified using qPCR or microscope slides covered with adhesive tape and identified and quantified using microscopy. Samples were collected from seven different sites in southern Alberta throughout the 2015-2017 growing seasons. The results demonstrated that qPCR can reliably identify and quantify spores from Puccinia striiformis f. sp. tritici, P. triticina, P. graminis f. sp. tritici, Blumeria graminis f. sp. tritici, Pyrenophora tritici-repentis, and Fusarium graminearum. The limits of detection of DNA for primer pairs in singleplex tests ranged from 0.0001 ng for P. graminis to 0.001 ng for P. tritici-repentis, which corresponded to approximately 3 spores for P. tritici-repentis and F. graminearum and 1 spore for the other pathogens. Conversely, microscopy permitted identification of rusts to the genus but not to the species level and was ineffective in quantification of the remainder of the wheat pathogens. This study will contribute to the development of a fast and reliable forecasting system that will enable identification and quantification of airborne pathogens in real-time before initial disease symptoms appear.
doi_str_mv 10.1080/07060661.2020.1817795
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2545008656</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2545008656</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-3fba3abcc2d166749941605dc50c04e71c0ebe3ee369cfaa756b32d16636a67d3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_QQh43ppsmmz3ZqmfUPCi5zCbTdqU3aRNstT-e3fbevU08PK8M8yD0D0lE0pm5JEURBAh6CQneR_NaFGU_AKNaEF5lpdlfolGA5MN0DW6iXFDSC644CPUPuukVbLeYXA13nXgkjVWwTHyBoMNlQ9O47j1QUdsgm9xtD_Ytn2Qehzv1xoSNp1bQYO3kNZ-pV3E1uHou7TWweF5U-kevkVXBpqo785zjL5fX74W79ny8-1jMV9mirFZypipgEGlVF5TIYppWU6pILxWnCgy1QVVRFeaac1EqQxAwUXFjiwTIIqajdHDae82-F2nY5Ib3wXXn5Q5n3JCZv33PcVPlAo-xqCN3AbbQjhISuRgVv6ZlYNZeTbb955OPeuMDy3sfWhqmeDQ-GACOGWjZP-v-AXzzoG9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2545008656</pqid></control><display><type>article</type><title>Detection and quantification of airborne spores from six important wheat fungal pathogens in southern Alberta</title><source>Taylor and Francis Science and Technology Collection</source><creator>Araujo, Gabriela T. ; Amundsen, Eric ; Frick, Michele ; Gaudet, Denis A. ; Aboukhaddour, Reem ; Selinger, Brent ; Thomas, James ; Laroche, André</creator><creatorcontrib>Araujo, Gabriela T. ; Amundsen, Eric ; Frick, Michele ; Gaudet, Denis A. ; Aboukhaddour, Reem ; Selinger, Brent ; Thomas, James ; Laroche, André</creatorcontrib><description>Wheat is affected by many fungal diseases that can cause severe yield and quality losses. Disease prediction models generally employ weather data to estimate potential for infection to determine timing for fungicide applications, but these models fail to account for the presence and quantity of pathogen inoculum. This study adapted highly specific qPCR primers to identify and quantify, in real-time, inoculum present in air for the six most important wheat pathogens in Canada. Fungal spores were collected using either Burkard spore collectors and quantified using qPCR or microscope slides covered with adhesive tape and identified and quantified using microscopy. Samples were collected from seven different sites in southern Alberta throughout the 2015-2017 growing seasons. The results demonstrated that qPCR can reliably identify and quantify spores from Puccinia striiformis f. sp. tritici, P. triticina, P. graminis f. sp. tritici, Blumeria graminis f. sp. tritici, Pyrenophora tritici-repentis, and Fusarium graminearum. The limits of detection of DNA for primer pairs in singleplex tests ranged from 0.0001 ng for P. graminis to 0.001 ng for P. tritici-repentis, which corresponded to approximately 3 spores for P. tritici-repentis and F. graminearum and 1 spore for the other pathogens. Conversely, microscopy permitted identification of rusts to the genus but not to the species level and was ineffective in quantification of the remainder of the wheat pathogens. This study will contribute to the development of a fast and reliable forecasting system that will enable identification and quantification of airborne pathogens in real-time before initial disease symptoms appear.</description><identifier>ISSN: 0706-0661</identifier><identifier>EISSN: 1715-2992</identifier><identifier>DOI: 10.1080/07060661.2020.1817795</identifier><language>eng</language><publisher>Philadelphia: Taylor &amp; Francis</publisher><subject>analyses par qPCR ; détection de pathogènes fongiques ; Fungal diseases ; fungal pathogen detection ; fungal pathogen quantification ; Fungi ; Fungicides ; Fusarium graminearum ; Growing season ; Inoculum ; maladies fongiques du blé ; Meteorological data ; Microscopy ; Pathogens ; Prediction models ; qPCR analyses ; quantification de pathogènes fongiques ; Real time ; Rust fungi ; Signs and symptoms ; spore trapping ; Spores ; trappage de spores ; Wheat ; wheat fungal diseases</subject><ispartof>Canadian journal of plant pathology, 2021-05, Vol.43 (3), p.439-454</ispartof><rights>2020 Her Majesty the Queen in Right of Canada, as represented by Agriculture and Agri-Food Canada (AAFC) 2020</rights><rights>2020 Her Majesty the Queen in Right of Canada, as represented by Agriculture and Agri-Food Canada (AAFC)</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-3fba3abcc2d166749941605dc50c04e71c0ebe3ee369cfaa756b32d16636a67d3</citedby><cites>FETCH-LOGICAL-c338t-3fba3abcc2d166749941605dc50c04e71c0ebe3ee369cfaa756b32d16636a67d3</cites><orcidid>0000-0002-7778-7396</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Araujo, Gabriela T.</creatorcontrib><creatorcontrib>Amundsen, Eric</creatorcontrib><creatorcontrib>Frick, Michele</creatorcontrib><creatorcontrib>Gaudet, Denis A.</creatorcontrib><creatorcontrib>Aboukhaddour, Reem</creatorcontrib><creatorcontrib>Selinger, Brent</creatorcontrib><creatorcontrib>Thomas, James</creatorcontrib><creatorcontrib>Laroche, André</creatorcontrib><title>Detection and quantification of airborne spores from six important wheat fungal pathogens in southern Alberta</title><title>Canadian journal of plant pathology</title><description>Wheat is affected by many fungal diseases that can cause severe yield and quality losses. Disease prediction models generally employ weather data to estimate potential for infection to determine timing for fungicide applications, but these models fail to account for the presence and quantity of pathogen inoculum. This study adapted highly specific qPCR primers to identify and quantify, in real-time, inoculum present in air for the six most important wheat pathogens in Canada. Fungal spores were collected using either Burkard spore collectors and quantified using qPCR or microscope slides covered with adhesive tape and identified and quantified using microscopy. Samples were collected from seven different sites in southern Alberta throughout the 2015-2017 growing seasons. The results demonstrated that qPCR can reliably identify and quantify spores from Puccinia striiformis f. sp. tritici, P. triticina, P. graminis f. sp. tritici, Blumeria graminis f. sp. tritici, Pyrenophora tritici-repentis, and Fusarium graminearum. The limits of detection of DNA for primer pairs in singleplex tests ranged from 0.0001 ng for P. graminis to 0.001 ng for P. tritici-repentis, which corresponded to approximately 3 spores for P. tritici-repentis and F. graminearum and 1 spore for the other pathogens. Conversely, microscopy permitted identification of rusts to the genus but not to the species level and was ineffective in quantification of the remainder of the wheat pathogens. This study will contribute to the development of a fast and reliable forecasting system that will enable identification and quantification of airborne pathogens in real-time before initial disease symptoms appear.</description><subject>analyses par qPCR</subject><subject>détection de pathogènes fongiques</subject><subject>Fungal diseases</subject><subject>fungal pathogen detection</subject><subject>fungal pathogen quantification</subject><subject>Fungi</subject><subject>Fungicides</subject><subject>Fusarium graminearum</subject><subject>Growing season</subject><subject>Inoculum</subject><subject>maladies fongiques du blé</subject><subject>Meteorological data</subject><subject>Microscopy</subject><subject>Pathogens</subject><subject>Prediction models</subject><subject>qPCR analyses</subject><subject>quantification de pathogènes fongiques</subject><subject>Real time</subject><subject>Rust fungi</subject><subject>Signs and symptoms</subject><subject>spore trapping</subject><subject>Spores</subject><subject>trappage de spores</subject><subject>Wheat</subject><subject>wheat fungal diseases</subject><issn>0706-0661</issn><issn>1715-2992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_QQh43ppsmmz3ZqmfUPCi5zCbTdqU3aRNstT-e3fbevU08PK8M8yD0D0lE0pm5JEURBAh6CQneR_NaFGU_AKNaEF5lpdlfolGA5MN0DW6iXFDSC644CPUPuukVbLeYXA13nXgkjVWwTHyBoMNlQ9O47j1QUdsgm9xtD_Ytn2Qehzv1xoSNp1bQYO3kNZ-pV3E1uHou7TWweF5U-kevkVXBpqo785zjL5fX74W79ny8-1jMV9mirFZypipgEGlVF5TIYppWU6pILxWnCgy1QVVRFeaac1EqQxAwUXFjiwTIIqajdHDae82-F2nY5Ib3wXXn5Q5n3JCZv33PcVPlAo-xqCN3AbbQjhISuRgVv6ZlYNZeTbb955OPeuMDy3sfWhqmeDQ-GACOGWjZP-v-AXzzoG9</recordid><startdate>20210504</startdate><enddate>20210504</enddate><creator>Araujo, Gabriela T.</creator><creator>Amundsen, Eric</creator><creator>Frick, Michele</creator><creator>Gaudet, Denis A.</creator><creator>Aboukhaddour, Reem</creator><creator>Selinger, Brent</creator><creator>Thomas, James</creator><creator>Laroche, André</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7778-7396</orcidid></search><sort><creationdate>20210504</creationdate><title>Detection and quantification of airborne spores from six important wheat fungal pathogens in southern Alberta</title><author>Araujo, Gabriela T. ; Amundsen, Eric ; Frick, Michele ; Gaudet, Denis A. ; Aboukhaddour, Reem ; Selinger, Brent ; Thomas, James ; Laroche, André</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-3fba3abcc2d166749941605dc50c04e71c0ebe3ee369cfaa756b32d16636a67d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>analyses par qPCR</topic><topic>détection de pathogènes fongiques</topic><topic>Fungal diseases</topic><topic>fungal pathogen detection</topic><topic>fungal pathogen quantification</topic><topic>Fungi</topic><topic>Fungicides</topic><topic>Fusarium graminearum</topic><topic>Growing season</topic><topic>Inoculum</topic><topic>maladies fongiques du blé</topic><topic>Meteorological data</topic><topic>Microscopy</topic><topic>Pathogens</topic><topic>Prediction models</topic><topic>qPCR analyses</topic><topic>quantification de pathogènes fongiques</topic><topic>Real time</topic><topic>Rust fungi</topic><topic>Signs and symptoms</topic><topic>spore trapping</topic><topic>Spores</topic><topic>trappage de spores</topic><topic>Wheat</topic><topic>wheat fungal diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Araujo, Gabriela T.</creatorcontrib><creatorcontrib>Amundsen, Eric</creatorcontrib><creatorcontrib>Frick, Michele</creatorcontrib><creatorcontrib>Gaudet, Denis A.</creatorcontrib><creatorcontrib>Aboukhaddour, Reem</creatorcontrib><creatorcontrib>Selinger, Brent</creatorcontrib><creatorcontrib>Thomas, James</creatorcontrib><creatorcontrib>Laroche, André</creatorcontrib><collection>CrossRef</collection><jtitle>Canadian journal of plant pathology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Araujo, Gabriela T.</au><au>Amundsen, Eric</au><au>Frick, Michele</au><au>Gaudet, Denis A.</au><au>Aboukhaddour, Reem</au><au>Selinger, Brent</au><au>Thomas, James</au><au>Laroche, André</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection and quantification of airborne spores from six important wheat fungal pathogens in southern Alberta</atitle><jtitle>Canadian journal of plant pathology</jtitle><date>2021-05-04</date><risdate>2021</risdate><volume>43</volume><issue>3</issue><spage>439</spage><epage>454</epage><pages>439-454</pages><issn>0706-0661</issn><eissn>1715-2992</eissn><abstract>Wheat is affected by many fungal diseases that can cause severe yield and quality losses. Disease prediction models generally employ weather data to estimate potential for infection to determine timing for fungicide applications, but these models fail to account for the presence and quantity of pathogen inoculum. This study adapted highly specific qPCR primers to identify and quantify, in real-time, inoculum present in air for the six most important wheat pathogens in Canada. Fungal spores were collected using either Burkard spore collectors and quantified using qPCR or microscope slides covered with adhesive tape and identified and quantified using microscopy. Samples were collected from seven different sites in southern Alberta throughout the 2015-2017 growing seasons. The results demonstrated that qPCR can reliably identify and quantify spores from Puccinia striiformis f. sp. tritici, P. triticina, P. graminis f. sp. tritici, Blumeria graminis f. sp. tritici, Pyrenophora tritici-repentis, and Fusarium graminearum. The limits of detection of DNA for primer pairs in singleplex tests ranged from 0.0001 ng for P. graminis to 0.001 ng for P. tritici-repentis, which corresponded to approximately 3 spores for P. tritici-repentis and F. graminearum and 1 spore for the other pathogens. Conversely, microscopy permitted identification of rusts to the genus but not to the species level and was ineffective in quantification of the remainder of the wheat pathogens. This study will contribute to the development of a fast and reliable forecasting system that will enable identification and quantification of airborne pathogens in real-time before initial disease symptoms appear.</abstract><cop>Philadelphia</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/07060661.2020.1817795</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-7778-7396</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0706-0661
ispartof Canadian journal of plant pathology, 2021-05, Vol.43 (3), p.439-454
issn 0706-0661
1715-2992
language eng
recordid cdi_proquest_journals_2545008656
source Taylor and Francis Science and Technology Collection
subjects analyses par qPCR
détection de pathogènes fongiques
Fungal diseases
fungal pathogen detection
fungal pathogen quantification
Fungi
Fungicides
Fusarium graminearum
Growing season
Inoculum
maladies fongiques du blé
Meteorological data
Microscopy
Pathogens
Prediction models
qPCR analyses
quantification de pathogènes fongiques
Real time
Rust fungi
Signs and symptoms
spore trapping
Spores
trappage de spores
Wheat
wheat fungal diseases
title Detection and quantification of airborne spores from six important wheat fungal pathogens in southern Alberta
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A13%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20and%20quantification%20of%20airborne%20spores%20from%20six%20important%20wheat%20fungal%20pathogens%20in%20southern%20Alberta&rft.jtitle=Canadian%20journal%20of%20plant%20pathology&rft.au=Araujo,%20Gabriela%20T.&rft.date=2021-05-04&rft.volume=43&rft.issue=3&rft.spage=439&rft.epage=454&rft.pages=439-454&rft.issn=0706-0661&rft.eissn=1715-2992&rft_id=info:doi/10.1080/07060661.2020.1817795&rft_dat=%3Cproquest_cross%3E2545008656%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-3fba3abcc2d166749941605dc50c04e71c0ebe3ee369cfaa756b32d16636a67d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2545008656&rft_id=info:pmid/&rfr_iscdi=true