Loading…
Environmental Behaviors of Procymidone in Different Types of Chinese Soil
Procymidone is a widely used fungicide in the prevention and treatment of fungal diseases on many crops in China. Part of the procymidone will enter the soil during the application process. Procymidone may exhibit environmental behavior diversity in different soils. Therefore, it is extremely import...
Saved in:
Published in: | Sustainability 2021-06, Vol.13 (12), p.6712 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Procymidone is a widely used fungicide in the prevention and treatment of fungal diseases on many crops in China. Part of the procymidone will enter the soil during the application process. Procymidone may exhibit environmental behavior diversity in different soils. Therefore, it is extremely important to clarify the environmental behavior of procymidone in soil for its environmental safety evaluation. Here, the degradation, adsorption, and mobility behaviors of procymidone in four typical types of Chinese soil were investigated for the first time. The half-lives of procymidone in the soils ranged from 14.3 d to 24.1 d. The degradation rates of procymidone in the soils were promoted by organic matter content, moisture content, and microorganisms. Furthermore, the degradation of procymidone on the soil surface was promoted by light. The desorption rates of procymidone in laterite soil, yellow brown soil, black soil, and chestnut soil were 27.52 ± 0.85%, 16.22 ± 0.78%, 13.67 ± 1.29%, and 7.62 ± 0.06%, respectively, which were contrary to the adsorption ability. The mobility order of procymidone in the soils was: laterite soil > yellow brown soil > black soil > chestnut soil, with the Rf values of 0.28, 0.22, 0.18, and 0.16, respectively. Three degradation products of procymidone were identified by liquid chromatography coupled with quadrupole/time-of-flight mass spectrometry, and the degradation pathway of procymidone in the soil was speculated. The results will provide a theoretical basis for the removal of procymidone in the soil environment. |
---|---|
ISSN: | 2071-1050 2071-1050 |
DOI: | 10.3390/su13126712 |