Loading…

Parity decision tree in classical–quantum separations for certain classes of Boolean functions

In this paper, we study the separation between the deterministic (classical) query complexity ( D ) and the exact quantum query complexity ( Q E ) of several Boolean function classes using the parity decision tree method. We first define the query friendly (QF) functions on n variables as the ones w...

Full description

Saved in:
Bibliographic Details
Published in:Quantum information processing 2021-06, Vol.20 (6), Article 218
Main Authors: Mukherjee, Chandra Sekhar, Maitra, Subhamoy
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c249t-6deca0221fd965b2a60ca6e6edba39efe3fd2e7bb9ecf0f9477331feab8642103
cites cdi_FETCH-LOGICAL-c249t-6deca0221fd965b2a60ca6e6edba39efe3fd2e7bb9ecf0f9477331feab8642103
container_end_page
container_issue 6
container_start_page
container_title Quantum information processing
container_volume 20
creator Mukherjee, Chandra Sekhar
Maitra, Subhamoy
description In this paper, we study the separation between the deterministic (classical) query complexity ( D ) and the exact quantum query complexity ( Q E ) of several Boolean function classes using the parity decision tree method. We first define the query friendly (QF) functions on n variables as the ones with minimum deterministic query complexity D ( f ). We observe that for each n , there exists a non-separable class of QF functions such that D ( f ) = Q E ( f ) . Further, we show that for some values of n , all the QF functions are non-separable. Then, we present QF functions for certain other values of n where separation can be demonstrated, in particular, Q E ( f ) = D ( f ) - 1 . In a related effort, we also study the Maiorana–McFarland (MM)-type Bent functions. We show that while for any MM Bent function f on n variables D ( f ) = n , separation can be achieved as n 2 ≤ Q E ( f ) ≤ ⌈ 3 n 4 ⌉ . Our results highlight how different classes of Boolean functions can be analyzed for classical–quantum separation exploiting the parity decision tree method.
doi_str_mv 10.1007/s11128-021-03158-1
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2545239658</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2545239658</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-6deca0221fd965b2a60ca6e6edba39efe3fd2e7bb9ecf0f9477331feab8642103</originalsourceid><addsrcrecordid>eNp9kD1OxDAQRi0EEsvCBagsURs8duIkJaz4k5CggNo4zhhllY137aTYjjtwQ06C2YDoqGaK930zeoScAj8HzouLCACiZFwA4xLyksEemUFeSAZSiv3dzhkv8vyQHMW45IlUpZqR1ycT2mFLG7RtbH1Ph4BI257azsTYWtN9vn9sRtMP44pGXJtghoRF6nygFsNgflmM1Dt65X2Hpqdu7O0OPCYHznQRT37mnLzcXD8v7tjD4-394vKBWZFVA1PpAcOFANdUKq-FUdwahQqb2sgKHUrXCCzqukLruKuyopASHJq6VJkALufkbOpdB78ZMQ566cfQp5Na5FkuZKotEyUmygYfY0Cn16FdmbDVwPW3ST2Z1MmP3pnUkEJyCsUE928Y_qr_SX0Bjxd5vA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2545239658</pqid></control><display><type>article</type><title>Parity decision tree in classical–quantum separations for certain classes of Boolean functions</title><source>Springer Link</source><creator>Mukherjee, Chandra Sekhar ; Maitra, Subhamoy</creator><creatorcontrib>Mukherjee, Chandra Sekhar ; Maitra, Subhamoy</creatorcontrib><description>In this paper, we study the separation between the deterministic (classical) query complexity ( D ) and the exact quantum query complexity ( Q E ) of several Boolean function classes using the parity decision tree method. We first define the query friendly (QF) functions on n variables as the ones with minimum deterministic query complexity D ( f ). We observe that for each n , there exists a non-separable class of QF functions such that D ( f ) = Q E ( f ) . Further, we show that for some values of n , all the QF functions are non-separable. Then, we present QF functions for certain other values of n where separation can be demonstrated, in particular, Q E ( f ) = D ( f ) - 1 . In a related effort, we also study the Maiorana–McFarland (MM)-type Bent functions. We show that while for any MM Bent function f on n variables D ( f ) = n , separation can be achieved as n 2 ≤ Q E ( f ) ≤ ⌈ 3 n 4 ⌉ . Our results highlight how different classes of Boolean functions can be analyzed for classical–quantum separation exploiting the parity decision tree method.</description><identifier>ISSN: 1570-0755</identifier><identifier>EISSN: 1573-1332</identifier><identifier>DOI: 10.1007/s11128-021-03158-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Boolean ; Boolean algebra ; Boolean functions ; Codes ; Complexity ; Data Structures and Information Theory ; Decision analysis ; Decision trees ; Mathematical analysis ; Mathematical Physics ; Parity ; Physics ; Physics and Astronomy ; Quantum Computing ; Quantum Information Technology ; Quantum Physics ; Queries ; Separation ; Spintronics</subject><ispartof>Quantum information processing, 2021-06, Vol.20 (6), Article 218</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-6deca0221fd965b2a60ca6e6edba39efe3fd2e7bb9ecf0f9477331feab8642103</citedby><cites>FETCH-LOGICAL-c249t-6deca0221fd965b2a60ca6e6edba39efe3fd2e7bb9ecf0f9477331feab8642103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mukherjee, Chandra Sekhar</creatorcontrib><creatorcontrib>Maitra, Subhamoy</creatorcontrib><title>Parity decision tree in classical–quantum separations for certain classes of Boolean functions</title><title>Quantum information processing</title><addtitle>Quantum Inf Process</addtitle><description>In this paper, we study the separation between the deterministic (classical) query complexity ( D ) and the exact quantum query complexity ( Q E ) of several Boolean function classes using the parity decision tree method. We first define the query friendly (QF) functions on n variables as the ones with minimum deterministic query complexity D ( f ). We observe that for each n , there exists a non-separable class of QF functions such that D ( f ) = Q E ( f ) . Further, we show that for some values of n , all the QF functions are non-separable. Then, we present QF functions for certain other values of n where separation can be demonstrated, in particular, Q E ( f ) = D ( f ) - 1 . In a related effort, we also study the Maiorana–McFarland (MM)-type Bent functions. We show that while for any MM Bent function f on n variables D ( f ) = n , separation can be achieved as n 2 ≤ Q E ( f ) ≤ ⌈ 3 n 4 ⌉ . Our results highlight how different classes of Boolean functions can be analyzed for classical–quantum separation exploiting the parity decision tree method.</description><subject>Boolean</subject><subject>Boolean algebra</subject><subject>Boolean functions</subject><subject>Codes</subject><subject>Complexity</subject><subject>Data Structures and Information Theory</subject><subject>Decision analysis</subject><subject>Decision trees</subject><subject>Mathematical analysis</subject><subject>Mathematical Physics</subject><subject>Parity</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Computing</subject><subject>Quantum Information Technology</subject><subject>Quantum Physics</subject><subject>Queries</subject><subject>Separation</subject><subject>Spintronics</subject><issn>1570-0755</issn><issn>1573-1332</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kD1OxDAQRi0EEsvCBagsURs8duIkJaz4k5CggNo4zhhllY137aTYjjtwQ06C2YDoqGaK930zeoScAj8HzouLCACiZFwA4xLyksEemUFeSAZSiv3dzhkv8vyQHMW45IlUpZqR1ycT2mFLG7RtbH1Ph4BI257azsTYWtN9vn9sRtMP44pGXJtghoRF6nygFsNgflmM1Dt65X2Hpqdu7O0OPCYHznQRT37mnLzcXD8v7tjD4-394vKBWZFVA1PpAcOFANdUKq-FUdwahQqb2sgKHUrXCCzqukLruKuyopASHJq6VJkALufkbOpdB78ZMQ566cfQp5Na5FkuZKotEyUmygYfY0Cn16FdmbDVwPW3ST2Z1MmP3pnUkEJyCsUE928Y_qr_SX0Bjxd5vA</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Mukherjee, Chandra Sekhar</creator><creator>Maitra, Subhamoy</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210601</creationdate><title>Parity decision tree in classical–quantum separations for certain classes of Boolean functions</title><author>Mukherjee, Chandra Sekhar ; Maitra, Subhamoy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-6deca0221fd965b2a60ca6e6edba39efe3fd2e7bb9ecf0f9477331feab8642103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Boolean</topic><topic>Boolean algebra</topic><topic>Boolean functions</topic><topic>Codes</topic><topic>Complexity</topic><topic>Data Structures and Information Theory</topic><topic>Decision analysis</topic><topic>Decision trees</topic><topic>Mathematical analysis</topic><topic>Mathematical Physics</topic><topic>Parity</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Computing</topic><topic>Quantum Information Technology</topic><topic>Quantum Physics</topic><topic>Queries</topic><topic>Separation</topic><topic>Spintronics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mukherjee, Chandra Sekhar</creatorcontrib><creatorcontrib>Maitra, Subhamoy</creatorcontrib><collection>CrossRef</collection><jtitle>Quantum information processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mukherjee, Chandra Sekhar</au><au>Maitra, Subhamoy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parity decision tree in classical–quantum separations for certain classes of Boolean functions</atitle><jtitle>Quantum information processing</jtitle><stitle>Quantum Inf Process</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>20</volume><issue>6</issue><artnum>218</artnum><issn>1570-0755</issn><eissn>1573-1332</eissn><abstract>In this paper, we study the separation between the deterministic (classical) query complexity ( D ) and the exact quantum query complexity ( Q E ) of several Boolean function classes using the parity decision tree method. We first define the query friendly (QF) functions on n variables as the ones with minimum deterministic query complexity D ( f ). We observe that for each n , there exists a non-separable class of QF functions such that D ( f ) = Q E ( f ) . Further, we show that for some values of n , all the QF functions are non-separable. Then, we present QF functions for certain other values of n where separation can be demonstrated, in particular, Q E ( f ) = D ( f ) - 1 . In a related effort, we also study the Maiorana–McFarland (MM)-type Bent functions. We show that while for any MM Bent function f on n variables D ( f ) = n , separation can be achieved as n 2 ≤ Q E ( f ) ≤ ⌈ 3 n 4 ⌉ . Our results highlight how different classes of Boolean functions can be analyzed for classical–quantum separation exploiting the parity decision tree method.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11128-021-03158-1</doi></addata></record>
fulltext fulltext
identifier ISSN: 1570-0755
ispartof Quantum information processing, 2021-06, Vol.20 (6), Article 218
issn 1570-0755
1573-1332
language eng
recordid cdi_proquest_journals_2545239658
source Springer Link
subjects Boolean
Boolean algebra
Boolean functions
Codes
Complexity
Data Structures and Information Theory
Decision analysis
Decision trees
Mathematical analysis
Mathematical Physics
Parity
Physics
Physics and Astronomy
Quantum Computing
Quantum Information Technology
Quantum Physics
Queries
Separation
Spintronics
title Parity decision tree in classical–quantum separations for certain classes of Boolean functions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A34%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parity%20decision%20tree%20in%20classical%E2%80%93quantum%20separations%20for%20certain%20classes%20of%20Boolean%20functions&rft.jtitle=Quantum%20information%20processing&rft.au=Mukherjee,%20Chandra%20Sekhar&rft.date=2021-06-01&rft.volume=20&rft.issue=6&rft.artnum=218&rft.issn=1570-0755&rft.eissn=1573-1332&rft_id=info:doi/10.1007/s11128-021-03158-1&rft_dat=%3Cproquest_cross%3E2545239658%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c249t-6deca0221fd965b2a60ca6e6edba39efe3fd2e7bb9ecf0f9477331feab8642103%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2545239658&rft_id=info:pmid/&rfr_iscdi=true