Loading…

Semigroups of transformations restricted by an equivalence

Suppose σ is an equivalence on a set X and let E ( X, σ ) denote the semigroup (under composition) of all α : X → X such that σ ⊆ α ∘ α −1 . Here we characterise Green’s relations and ideals in E ( X, σ ). This is analogous to recent work by Sullivan on K ( V, W ), the semigroup (under composition)...

Full description

Saved in:
Bibliographic Details
Published in:Central European journal of mathematics 2010-12, Vol.8 (6), p.1120-1131
Main Authors: Mendes-Gonçalves, Suzana, Sullivan, Robert P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c397t-265726fe0fafdc28b387388baea1d0367c541e8f987a0082c7463e716a74d9503
cites cdi_FETCH-LOGICAL-c397t-265726fe0fafdc28b387388baea1d0367c541e8f987a0082c7463e716a74d9503
container_end_page 1131
container_issue 6
container_start_page 1120
container_title Central European journal of mathematics
container_volume 8
creator Mendes-Gonçalves, Suzana
Sullivan, Robert P.
description Suppose σ is an equivalence on a set X and let E ( X, σ ) denote the semigroup (under composition) of all α : X → X such that σ ⊆ α ∘ α −1 . Here we characterise Green’s relations and ideals in E ( X, σ ). This is analogous to recent work by Sullivan on K ( V, W ), the semigroup (under composition) of all linear transformations β of a vector space V such that W ⊆ ker β , where W is a fixed subspace of V .
doi_str_mv 10.2478/s11533-010-0066-8
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2545266710</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2545266710</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-265726fe0fafdc28b387388baea1d0367c541e8f987a0082c7463e716a74d9503</originalsourceid><addsrcrecordid>eNqNkE9LxDAUxIMouK5-AG8Fz9H3kjRJvYgs_oMFD-o5pG2ydNltd5NW2W9vSgVPgqc3h_nNPIaQS4RrJpS-iYg55xQQKICUVB-RGUohKJcoj5PWRU4RlDglZzGuARhoxBm5fXPbZhW6YRezzmd9sG30XdjavunamAUX-9BUvauz8pDZNnP7ofm0G9dW7pyceLuJ7uLnzsnH48P74pkuX59eFvdLWvFC9ZTJXDHpHXjr64rpkmvFtS6ts1gDl6rKBTrtC60sgGaVEpI7hdIqURc58Dm5mnJ3odsP6SGz7obQpkrDcpEzKRWOLpxcVehiDM6bXWi2NhwMghknMtNEJk1kxomMTszdxHzZTe9C7VZhOCTxW_AnqyUiG1vZlBBTW7v6F8q_ARuufF4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2545266710</pqid></control><display><type>article</type><title>Semigroups of transformations restricted by an equivalence</title><source>Publicly Available Content Database</source><source>De Gruyter Journals - Open Access</source><creator>Mendes-Gonçalves, Suzana ; Sullivan, Robert P.</creator><creatorcontrib>Mendes-Gonçalves, Suzana ; Sullivan, Robert P.</creatorcontrib><description>Suppose σ is an equivalence on a set X and let E ( X, σ ) denote the semigroup (under composition) of all α : X → X such that σ ⊆ α ∘ α −1 . Here we characterise Green’s relations and ideals in E ( X, σ ). This is analogous to recent work by Sullivan on K ( V, W ), the semigroup (under composition) of all linear transformations β of a vector space V such that W ⊆ ker β , where W is a fixed subspace of V .</description><identifier>ISSN: 1895-1074</identifier><identifier>EISSN: 1644-3616</identifier><identifier>EISSN: 2391-5455</identifier><identifier>DOI: 10.2478/s11533-010-0066-8</identifier><language>eng</language><publisher>Heidelberg: SP Versita</publisher><subject>20M20 ; Algebra ; Composition ; Equivalence ; Geometry ; Green’s relations ; Ideals ; Lie Groups ; Linear transformations ; Mathematics ; Mathematics and Statistics ; Number Theory ; Probability Theory and Stochastic Processes ; Research Article ; Semigroups ; Topological Groups ; Transformation semigroup</subject><ispartof>Central European journal of mathematics, 2010-12, Vol.8 (6), p.1120-1131</ispartof><rights>Versita Warsaw and Springer-Verlag Wien 2010</rights><rights>2010. This work is published under http://creativecommons.org/licenses/by-nc-nd/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-265726fe0fafdc28b387388baea1d0367c541e8f987a0082c7463e716a74d9503</citedby><cites>FETCH-LOGICAL-c397t-265726fe0fafdc28b387388baea1d0367c541e8f987a0082c7463e716a74d9503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.degruyter.com/document/doi/10.2478/s11533-010-0066-8/pdf$$EPDF$$P50$$Gwalterdegruyter$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2545266710?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,67158,68942</link.rule.ids></links><search><creatorcontrib>Mendes-Gonçalves, Suzana</creatorcontrib><creatorcontrib>Sullivan, Robert P.</creatorcontrib><title>Semigroups of transformations restricted by an equivalence</title><title>Central European journal of mathematics</title><addtitle>centr.eur.j.math</addtitle><description>Suppose σ is an equivalence on a set X and let E ( X, σ ) denote the semigroup (under composition) of all α : X → X such that σ ⊆ α ∘ α −1 . Here we characterise Green’s relations and ideals in E ( X, σ ). This is analogous to recent work by Sullivan on K ( V, W ), the semigroup (under composition) of all linear transformations β of a vector space V such that W ⊆ ker β , where W is a fixed subspace of V .</description><subject>20M20</subject><subject>Algebra</subject><subject>Composition</subject><subject>Equivalence</subject><subject>Geometry</subject><subject>Green’s relations</subject><subject>Ideals</subject><subject>Lie Groups</subject><subject>Linear transformations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Number Theory</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Research Article</subject><subject>Semigroups</subject><subject>Topological Groups</subject><subject>Transformation semigroup</subject><issn>1895-1074</issn><issn>1644-3616</issn><issn>2391-5455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNkE9LxDAUxIMouK5-AG8Fz9H3kjRJvYgs_oMFD-o5pG2ydNltd5NW2W9vSgVPgqc3h_nNPIaQS4RrJpS-iYg55xQQKICUVB-RGUohKJcoj5PWRU4RlDglZzGuARhoxBm5fXPbZhW6YRezzmd9sG30XdjavunamAUX-9BUvauz8pDZNnP7ofm0G9dW7pyceLuJ7uLnzsnH48P74pkuX59eFvdLWvFC9ZTJXDHpHXjr64rpkmvFtS6ts1gDl6rKBTrtC60sgGaVEpI7hdIqURc58Dm5mnJ3odsP6SGz7obQpkrDcpEzKRWOLpxcVehiDM6bXWi2NhwMghknMtNEJk1kxomMTszdxHzZTe9C7VZhOCTxW_AnqyUiG1vZlBBTW7v6F8q_ARuufF4</recordid><startdate>20101201</startdate><enddate>20101201</enddate><creator>Mendes-Gonçalves, Suzana</creator><creator>Sullivan, Robert P.</creator><general>SP Versita</general><general>Versita</general><general>De Gruyter Poland</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2P</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20101201</creationdate><title>Semigroups of transformations restricted by an equivalence</title><author>Mendes-Gonçalves, Suzana ; Sullivan, Robert P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-265726fe0fafdc28b387388baea1d0367c541e8f987a0082c7463e716a74d9503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>20M20</topic><topic>Algebra</topic><topic>Composition</topic><topic>Equivalence</topic><topic>Geometry</topic><topic>Green’s relations</topic><topic>Ideals</topic><topic>Lie Groups</topic><topic>Linear transformations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Number Theory</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Research Article</topic><topic>Semigroups</topic><topic>Topological Groups</topic><topic>Transformation semigroup</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mendes-Gonçalves, Suzana</creatorcontrib><creatorcontrib>Sullivan, Robert P.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Central European journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mendes-Gonçalves, Suzana</au><au>Sullivan, Robert P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semigroups of transformations restricted by an equivalence</atitle><jtitle>Central European journal of mathematics</jtitle><stitle>centr.eur.j.math</stitle><date>2010-12-01</date><risdate>2010</risdate><volume>8</volume><issue>6</issue><spage>1120</spage><epage>1131</epage><pages>1120-1131</pages><issn>1895-1074</issn><eissn>1644-3616</eissn><eissn>2391-5455</eissn><abstract>Suppose σ is an equivalence on a set X and let E ( X, σ ) denote the semigroup (under composition) of all α : X → X such that σ ⊆ α ∘ α −1 . Here we characterise Green’s relations and ideals in E ( X, σ ). This is analogous to recent work by Sullivan on K ( V, W ), the semigroup (under composition) of all linear transformations β of a vector space V such that W ⊆ ker β , where W is a fixed subspace of V .</abstract><cop>Heidelberg</cop><pub>SP Versita</pub><doi>10.2478/s11533-010-0066-8</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1895-1074
ispartof Central European journal of mathematics, 2010-12, Vol.8 (6), p.1120-1131
issn 1895-1074
1644-3616
2391-5455
language eng
recordid cdi_proquest_journals_2545266710
source Publicly Available Content Database; De Gruyter Journals - Open Access
subjects 20M20
Algebra
Composition
Equivalence
Geometry
Green’s relations
Ideals
Lie Groups
Linear transformations
Mathematics
Mathematics and Statistics
Number Theory
Probability Theory and Stochastic Processes
Research Article
Semigroups
Topological Groups
Transformation semigroup
title Semigroups of transformations restricted by an equivalence
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T05%3A22%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semigroups%20of%20transformations%20restricted%20by%20an%20equivalence&rft.jtitle=Central%20European%20journal%20of%20mathematics&rft.au=Mendes-Gon%C3%A7alves,%20Suzana&rft.date=2010-12-01&rft.volume=8&rft.issue=6&rft.spage=1120&rft.epage=1131&rft.pages=1120-1131&rft.issn=1895-1074&rft.eissn=1644-3616&rft_id=info:doi/10.2478/s11533-010-0066-8&rft_dat=%3Cproquest_cross%3E2545266710%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c397t-265726fe0fafdc28b387388baea1d0367c541e8f987a0082c7463e716a74d9503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2545266710&rft_id=info:pmid/&rfr_iscdi=true