Loading…
Semigroups of transformations restricted by an equivalence
Suppose σ is an equivalence on a set X and let E ( X, σ ) denote the semigroup (under composition) of all α : X → X such that σ ⊆ α ∘ α −1 . Here we characterise Green’s relations and ideals in E ( X, σ ). This is analogous to recent work by Sullivan on K ( V, W ), the semigroup (under composition)...
Saved in:
Published in: | Central European journal of mathematics 2010-12, Vol.8 (6), p.1120-1131 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c397t-265726fe0fafdc28b387388baea1d0367c541e8f987a0082c7463e716a74d9503 |
---|---|
cites | cdi_FETCH-LOGICAL-c397t-265726fe0fafdc28b387388baea1d0367c541e8f987a0082c7463e716a74d9503 |
container_end_page | 1131 |
container_issue | 6 |
container_start_page | 1120 |
container_title | Central European journal of mathematics |
container_volume | 8 |
creator | Mendes-Gonçalves, Suzana Sullivan, Robert P. |
description | Suppose
σ
is an equivalence on a set
X
and let
E
(
X, σ
) denote the semigroup (under composition) of all
α
:
X
→
X
such that
σ
⊆
α
∘
α
−1
. Here we characterise Green’s relations and ideals in
E
(
X, σ
). This is analogous to recent work by Sullivan on
K
(
V, W
), the semigroup (under composition) of all linear transformations
β
of a vector space
V
such that
W
⊆ ker
β
, where
W
is a fixed subspace of
V
. |
doi_str_mv | 10.2478/s11533-010-0066-8 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2545266710</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2545266710</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-265726fe0fafdc28b387388baea1d0367c541e8f987a0082c7463e716a74d9503</originalsourceid><addsrcrecordid>eNqNkE9LxDAUxIMouK5-AG8Fz9H3kjRJvYgs_oMFD-o5pG2ydNltd5NW2W9vSgVPgqc3h_nNPIaQS4RrJpS-iYg55xQQKICUVB-RGUohKJcoj5PWRU4RlDglZzGuARhoxBm5fXPbZhW6YRezzmd9sG30XdjavunamAUX-9BUvauz8pDZNnP7ofm0G9dW7pyceLuJ7uLnzsnH48P74pkuX59eFvdLWvFC9ZTJXDHpHXjr64rpkmvFtS6ts1gDl6rKBTrtC60sgGaVEpI7hdIqURc58Dm5mnJ3odsP6SGz7obQpkrDcpEzKRWOLpxcVehiDM6bXWi2NhwMghknMtNEJk1kxomMTszdxHzZTe9C7VZhOCTxW_AnqyUiG1vZlBBTW7v6F8q_ARuufF4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2545266710</pqid></control><display><type>article</type><title>Semigroups of transformations restricted by an equivalence</title><source>Publicly Available Content Database</source><source>De Gruyter Journals - Open Access</source><creator>Mendes-Gonçalves, Suzana ; Sullivan, Robert P.</creator><creatorcontrib>Mendes-Gonçalves, Suzana ; Sullivan, Robert P.</creatorcontrib><description>Suppose
σ
is an equivalence on a set
X
and let
E
(
X, σ
) denote the semigroup (under composition) of all
α
:
X
→
X
such that
σ
⊆
α
∘
α
−1
. Here we characterise Green’s relations and ideals in
E
(
X, σ
). This is analogous to recent work by Sullivan on
K
(
V, W
), the semigroup (under composition) of all linear transformations
β
of a vector space
V
such that
W
⊆ ker
β
, where
W
is a fixed subspace of
V
.</description><identifier>ISSN: 1895-1074</identifier><identifier>EISSN: 1644-3616</identifier><identifier>EISSN: 2391-5455</identifier><identifier>DOI: 10.2478/s11533-010-0066-8</identifier><language>eng</language><publisher>Heidelberg: SP Versita</publisher><subject>20M20 ; Algebra ; Composition ; Equivalence ; Geometry ; Green’s relations ; Ideals ; Lie Groups ; Linear transformations ; Mathematics ; Mathematics and Statistics ; Number Theory ; Probability Theory and Stochastic Processes ; Research Article ; Semigroups ; Topological Groups ; Transformation semigroup</subject><ispartof>Central European journal of mathematics, 2010-12, Vol.8 (6), p.1120-1131</ispartof><rights>Versita Warsaw and Springer-Verlag Wien 2010</rights><rights>2010. This work is published under http://creativecommons.org/licenses/by-nc-nd/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-265726fe0fafdc28b387388baea1d0367c541e8f987a0082c7463e716a74d9503</citedby><cites>FETCH-LOGICAL-c397t-265726fe0fafdc28b387388baea1d0367c541e8f987a0082c7463e716a74d9503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.degruyter.com/document/doi/10.2478/s11533-010-0066-8/pdf$$EPDF$$P50$$Gwalterdegruyter$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2545266710?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,67158,68942</link.rule.ids></links><search><creatorcontrib>Mendes-Gonçalves, Suzana</creatorcontrib><creatorcontrib>Sullivan, Robert P.</creatorcontrib><title>Semigroups of transformations restricted by an equivalence</title><title>Central European journal of mathematics</title><addtitle>centr.eur.j.math</addtitle><description>Suppose
σ
is an equivalence on a set
X
and let
E
(
X, σ
) denote the semigroup (under composition) of all
α
:
X
→
X
such that
σ
⊆
α
∘
α
−1
. Here we characterise Green’s relations and ideals in
E
(
X, σ
). This is analogous to recent work by Sullivan on
K
(
V, W
), the semigroup (under composition) of all linear transformations
β
of a vector space
V
such that
W
⊆ ker
β
, where
W
is a fixed subspace of
V
.</description><subject>20M20</subject><subject>Algebra</subject><subject>Composition</subject><subject>Equivalence</subject><subject>Geometry</subject><subject>Green’s relations</subject><subject>Ideals</subject><subject>Lie Groups</subject><subject>Linear transformations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Number Theory</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Research Article</subject><subject>Semigroups</subject><subject>Topological Groups</subject><subject>Transformation semigroup</subject><issn>1895-1074</issn><issn>1644-3616</issn><issn>2391-5455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNkE9LxDAUxIMouK5-AG8Fz9H3kjRJvYgs_oMFD-o5pG2ydNltd5NW2W9vSgVPgqc3h_nNPIaQS4RrJpS-iYg55xQQKICUVB-RGUohKJcoj5PWRU4RlDglZzGuARhoxBm5fXPbZhW6YRezzmd9sG30XdjavunamAUX-9BUvauz8pDZNnP7ofm0G9dW7pyceLuJ7uLnzsnH48P74pkuX59eFvdLWvFC9ZTJXDHpHXjr64rpkmvFtS6ts1gDl6rKBTrtC60sgGaVEpI7hdIqURc58Dm5mnJ3odsP6SGz7obQpkrDcpEzKRWOLpxcVehiDM6bXWi2NhwMghknMtNEJk1kxomMTszdxHzZTe9C7VZhOCTxW_AnqyUiG1vZlBBTW7v6F8q_ARuufF4</recordid><startdate>20101201</startdate><enddate>20101201</enddate><creator>Mendes-Gonçalves, Suzana</creator><creator>Sullivan, Robert P.</creator><general>SP Versita</general><general>Versita</general><general>De Gruyter Poland</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2P</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20101201</creationdate><title>Semigroups of transformations restricted by an equivalence</title><author>Mendes-Gonçalves, Suzana ; Sullivan, Robert P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-265726fe0fafdc28b387388baea1d0367c541e8f987a0082c7463e716a74d9503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>20M20</topic><topic>Algebra</topic><topic>Composition</topic><topic>Equivalence</topic><topic>Geometry</topic><topic>Green’s relations</topic><topic>Ideals</topic><topic>Lie Groups</topic><topic>Linear transformations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Number Theory</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Research Article</topic><topic>Semigroups</topic><topic>Topological Groups</topic><topic>Transformation semigroup</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mendes-Gonçalves, Suzana</creatorcontrib><creatorcontrib>Sullivan, Robert P.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Central European journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mendes-Gonçalves, Suzana</au><au>Sullivan, Robert P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semigroups of transformations restricted by an equivalence</atitle><jtitle>Central European journal of mathematics</jtitle><stitle>centr.eur.j.math</stitle><date>2010-12-01</date><risdate>2010</risdate><volume>8</volume><issue>6</issue><spage>1120</spage><epage>1131</epage><pages>1120-1131</pages><issn>1895-1074</issn><eissn>1644-3616</eissn><eissn>2391-5455</eissn><abstract>Suppose
σ
is an equivalence on a set
X
and let
E
(
X, σ
) denote the semigroup (under composition) of all
α
:
X
→
X
such that
σ
⊆
α
∘
α
−1
. Here we characterise Green’s relations and ideals in
E
(
X, σ
). This is analogous to recent work by Sullivan on
K
(
V, W
), the semigroup (under composition) of all linear transformations
β
of a vector space
V
such that
W
⊆ ker
β
, where
W
is a fixed subspace of
V
.</abstract><cop>Heidelberg</cop><pub>SP Versita</pub><doi>10.2478/s11533-010-0066-8</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1895-1074 |
ispartof | Central European journal of mathematics, 2010-12, Vol.8 (6), p.1120-1131 |
issn | 1895-1074 1644-3616 2391-5455 |
language | eng |
recordid | cdi_proquest_journals_2545266710 |
source | Publicly Available Content Database; De Gruyter Journals - Open Access |
subjects | 20M20 Algebra Composition Equivalence Geometry Green’s relations Ideals Lie Groups Linear transformations Mathematics Mathematics and Statistics Number Theory Probability Theory and Stochastic Processes Research Article Semigroups Topological Groups Transformation semigroup |
title | Semigroups of transformations restricted by an equivalence |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T05%3A22%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semigroups%20of%20transformations%20restricted%20by%20an%20equivalence&rft.jtitle=Central%20European%20journal%20of%20mathematics&rft.au=Mendes-Gon%C3%A7alves,%20Suzana&rft.date=2010-12-01&rft.volume=8&rft.issue=6&rft.spage=1120&rft.epage=1131&rft.pages=1120-1131&rft.issn=1895-1074&rft.eissn=1644-3616&rft_id=info:doi/10.2478/s11533-010-0066-8&rft_dat=%3Cproquest_cross%3E2545266710%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c397t-265726fe0fafdc28b387388baea1d0367c541e8f987a0082c7463e716a74d9503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2545266710&rft_id=info:pmid/&rfr_iscdi=true |