Loading…
Scaffold‐Directed Face Selectivity Machine‐Learned from Vectors of Non‐covalent Interactions
This work describes a method to vectorize and Machine‐Learn, ML, non‐covalent interactions responsible for scaffold‐directed reactions important in synthetic chemistry. Models trained on this representation predict correct face of approach in ca. 90 % of Michael additions or Diels–Alder cycloadditio...
Saved in:
Published in: | Angewandte Chemie 2021-07, Vol.133 (28), p.15358-15363 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2026-499135472f60d91330f93d1defe088e98356680ecab812981c0a9d5f4eb0bbc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c2026-499135472f60d91330f93d1defe088e98356680ecab812981c0a9d5f4eb0bbc3 |
container_end_page | 15363 |
container_issue | 28 |
container_start_page | 15358 |
container_title | Angewandte Chemie |
container_volume | 133 |
creator | Moskal, Martyna Beker, Wiktor Szymkuć, Sara Grzybowski, Bartosz A. |
description | This work describes a method to vectorize and Machine‐Learn, ML, non‐covalent interactions responsible for scaffold‐directed reactions important in synthetic chemistry. Models trained on this representation predict correct face of approach in ca. 90 % of Michael additions or Diels–Alder cycloadditions. These accuracies are significantly higher than those based on traditional ML descriptors, energetic calculations, or intuition of experienced synthetic chemists. Our results also emphasize the importance of ML models being provided with relevant mechanistic knowledge; without such knowledge, these models cannot easily “transfer‐learn” and extrapolate to previously unseen reaction mechanisms.
A machine‐learning, ML, model based on vectors of transition‐state interatomic contacts can predict face‐selectivity of Michael additions or Diels–Alder cycloadditions more accurately than traditional ML schemes, energetic calculations, or seasoned organic chemists. |
doi_str_mv | 10.1002/ange.202101986 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2545477079</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2545477079</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2026-499135472f60d91330f93d1defe088e98356680ecab812981c0a9d5f4eb0bbc3</originalsourceid><addsrcrecordid>eNqFkM9OAjEQxhujiYhePW_ieXHa_dceCSKSIB4gXptud6pLli22C4abj-Az-iSWYPToaWYyv--byUfINYUBBWC3qn3BAQNGgQqen5AezRiNkyIrTkkPIE1jzlJxTi68XwFAzgrRI-VCK2NsU319fN7VDnWHVXSvNEYLbMJU7-puHz0q_Vq3GJgZKtcGxDi7jp4DYJ2PrInmtg1bbXeqwbaLpm2HTgW5bf0lOTOq8Xj1U_tkeT9ejh7i2dNkOhrOYh2ezuNUCJpkacFMDlVoEzAiqWiFBoFzFDzJ8pwDalVyygSnGpSoMpNiCWWpkz65OdpunH3bou_kym5dGy5KlqXBuIBCBGpwpLSz3js0cuPqtXJ7SUEeYpSHGOVvjEEgjoL3usH9P7QczifjP-030oh55w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2545477079</pqid></control><display><type>article</type><title>Scaffold‐Directed Face Selectivity Machine‐Learned from Vectors of Non‐covalent Interactions</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Moskal, Martyna ; Beker, Wiktor ; Szymkuć, Sara ; Grzybowski, Bartosz A.</creator><creatorcontrib>Moskal, Martyna ; Beker, Wiktor ; Szymkuć, Sara ; Grzybowski, Bartosz A.</creatorcontrib><description>This work describes a method to vectorize and Machine‐Learn, ML, non‐covalent interactions responsible for scaffold‐directed reactions important in synthetic chemistry. Models trained on this representation predict correct face of approach in ca. 90 % of Michael additions or Diels–Alder cycloadditions. These accuracies are significantly higher than those based on traditional ML descriptors, energetic calculations, or intuition of experienced synthetic chemists. Our results also emphasize the importance of ML models being provided with relevant mechanistic knowledge; without such knowledge, these models cannot easily “transfer‐learn” and extrapolate to previously unseen reaction mechanisms.
A machine‐learning, ML, model based on vectors of transition‐state interatomic contacts can predict face‐selectivity of Michael additions or Diels–Alder cycloadditions more accurately than traditional ML schemes, energetic calculations, or seasoned organic chemists.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.202101986</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Chemistry ; Chemists ; computer-aided synthesis ; machine learning ; Reaction mechanisms ; Scaffolds ; Selectivity</subject><ispartof>Angewandte Chemie, 2021-07, Vol.133 (28), p.15358-15363</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2026-499135472f60d91330f93d1defe088e98356680ecab812981c0a9d5f4eb0bbc3</citedby><cites>FETCH-LOGICAL-c2026-499135472f60d91330f93d1defe088e98356680ecab812981c0a9d5f4eb0bbc3</cites><orcidid>0000-0001-6613-4261</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Moskal, Martyna</creatorcontrib><creatorcontrib>Beker, Wiktor</creatorcontrib><creatorcontrib>Szymkuć, Sara</creatorcontrib><creatorcontrib>Grzybowski, Bartosz A.</creatorcontrib><title>Scaffold‐Directed Face Selectivity Machine‐Learned from Vectors of Non‐covalent Interactions</title><title>Angewandte Chemie</title><description>This work describes a method to vectorize and Machine‐Learn, ML, non‐covalent interactions responsible for scaffold‐directed reactions important in synthetic chemistry. Models trained on this representation predict correct face of approach in ca. 90 % of Michael additions or Diels–Alder cycloadditions. These accuracies are significantly higher than those based on traditional ML descriptors, energetic calculations, or intuition of experienced synthetic chemists. Our results also emphasize the importance of ML models being provided with relevant mechanistic knowledge; without such knowledge, these models cannot easily “transfer‐learn” and extrapolate to previously unseen reaction mechanisms.
A machine‐learning, ML, model based on vectors of transition‐state interatomic contacts can predict face‐selectivity of Michael additions or Diels–Alder cycloadditions more accurately than traditional ML schemes, energetic calculations, or seasoned organic chemists.</description><subject>Chemistry</subject><subject>Chemists</subject><subject>computer-aided synthesis</subject><subject>machine learning</subject><subject>Reaction mechanisms</subject><subject>Scaffolds</subject><subject>Selectivity</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkM9OAjEQxhujiYhePW_ieXHa_dceCSKSIB4gXptud6pLli22C4abj-Az-iSWYPToaWYyv--byUfINYUBBWC3qn3BAQNGgQqen5AezRiNkyIrTkkPIE1jzlJxTi68XwFAzgrRI-VCK2NsU319fN7VDnWHVXSvNEYLbMJU7-puHz0q_Vq3GJgZKtcGxDi7jp4DYJ2PrInmtg1bbXeqwbaLpm2HTgW5bf0lOTOq8Xj1U_tkeT9ejh7i2dNkOhrOYh2ezuNUCJpkacFMDlVoEzAiqWiFBoFzFDzJ8pwDalVyygSnGpSoMpNiCWWpkz65OdpunH3bou_kym5dGy5KlqXBuIBCBGpwpLSz3js0cuPqtXJ7SUEeYpSHGOVvjEEgjoL3usH9P7QczifjP-030oh55w</recordid><startdate>20210705</startdate><enddate>20210705</enddate><creator>Moskal, Martyna</creator><creator>Beker, Wiktor</creator><creator>Szymkuć, Sara</creator><creator>Grzybowski, Bartosz A.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6613-4261</orcidid></search><sort><creationdate>20210705</creationdate><title>Scaffold‐Directed Face Selectivity Machine‐Learned from Vectors of Non‐covalent Interactions</title><author>Moskal, Martyna ; Beker, Wiktor ; Szymkuć, Sara ; Grzybowski, Bartosz A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2026-499135472f60d91330f93d1defe088e98356680ecab812981c0a9d5f4eb0bbc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemistry</topic><topic>Chemists</topic><topic>computer-aided synthesis</topic><topic>machine learning</topic><topic>Reaction mechanisms</topic><topic>Scaffolds</topic><topic>Selectivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moskal, Martyna</creatorcontrib><creatorcontrib>Beker, Wiktor</creatorcontrib><creatorcontrib>Szymkuć, Sara</creatorcontrib><creatorcontrib>Grzybowski, Bartosz A.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moskal, Martyna</au><au>Beker, Wiktor</au><au>Szymkuć, Sara</au><au>Grzybowski, Bartosz A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scaffold‐Directed Face Selectivity Machine‐Learned from Vectors of Non‐covalent Interactions</atitle><jtitle>Angewandte Chemie</jtitle><date>2021-07-05</date><risdate>2021</risdate><volume>133</volume><issue>28</issue><spage>15358</spage><epage>15363</epage><pages>15358-15363</pages><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>This work describes a method to vectorize and Machine‐Learn, ML, non‐covalent interactions responsible for scaffold‐directed reactions important in synthetic chemistry. Models trained on this representation predict correct face of approach in ca. 90 % of Michael additions or Diels–Alder cycloadditions. These accuracies are significantly higher than those based on traditional ML descriptors, energetic calculations, or intuition of experienced synthetic chemists. Our results also emphasize the importance of ML models being provided with relevant mechanistic knowledge; without such knowledge, these models cannot easily “transfer‐learn” and extrapolate to previously unseen reaction mechanisms.
A machine‐learning, ML, model based on vectors of transition‐state interatomic contacts can predict face‐selectivity of Michael additions or Diels–Alder cycloadditions more accurately than traditional ML schemes, energetic calculations, or seasoned organic chemists.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.202101986</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-6613-4261</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0044-8249 |
ispartof | Angewandte Chemie, 2021-07, Vol.133 (28), p.15358-15363 |
issn | 0044-8249 1521-3757 |
language | eng |
recordid | cdi_proquest_journals_2545477079 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Chemistry Chemists computer-aided synthesis machine learning Reaction mechanisms Scaffolds Selectivity |
title | Scaffold‐Directed Face Selectivity Machine‐Learned from Vectors of Non‐covalent Interactions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A39%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scaffold%E2%80%90Directed%20Face%20Selectivity%20Machine%E2%80%90Learned%20from%20Vectors%20of%20Non%E2%80%90covalent%20Interactions&rft.jtitle=Angewandte%20Chemie&rft.au=Moskal,%20Martyna&rft.date=2021-07-05&rft.volume=133&rft.issue=28&rft.spage=15358&rft.epage=15363&rft.pages=15358-15363&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.202101986&rft_dat=%3Cproquest_cross%3E2545477079%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2026-499135472f60d91330f93d1defe088e98356680ecab812981c0a9d5f4eb0bbc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2545477079&rft_id=info:pmid/&rfr_iscdi=true |