Loading…

Scaffold‐Directed Face Selectivity Machine‐Learned from Vectors of Non‐covalent Interactions

This work describes a method to vectorize and Machine‐Learn, ML, non‐covalent interactions responsible for scaffold‐directed reactions important in synthetic chemistry. Models trained on this representation predict correct face of approach in ca. 90 % of Michael additions or Diels–Alder cycloadditio...

Full description

Saved in:
Bibliographic Details
Published in:Angewandte Chemie 2021-07, Vol.133 (28), p.15358-15363
Main Authors: Moskal, Martyna, Beker, Wiktor, Szymkuć, Sara, Grzybowski, Bartosz A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2026-499135472f60d91330f93d1defe088e98356680ecab812981c0a9d5f4eb0bbc3
cites cdi_FETCH-LOGICAL-c2026-499135472f60d91330f93d1defe088e98356680ecab812981c0a9d5f4eb0bbc3
container_end_page 15363
container_issue 28
container_start_page 15358
container_title Angewandte Chemie
container_volume 133
creator Moskal, Martyna
Beker, Wiktor
Szymkuć, Sara
Grzybowski, Bartosz A.
description This work describes a method to vectorize and Machine‐Learn, ML, non‐covalent interactions responsible for scaffold‐directed reactions important in synthetic chemistry. Models trained on this representation predict correct face of approach in ca. 90 % of Michael additions or Diels–Alder cycloadditions. These accuracies are significantly higher than those based on traditional ML descriptors, energetic calculations, or intuition of experienced synthetic chemists. Our results also emphasize the importance of ML models being provided with relevant mechanistic knowledge; without such knowledge, these models cannot easily “transfer‐learn” and extrapolate to previously unseen reaction mechanisms. A machine‐learning, ML, model based on vectors of transition‐state interatomic contacts can predict face‐selectivity of Michael additions or Diels–Alder cycloadditions more accurately than traditional ML schemes, energetic calculations, or seasoned organic chemists.
doi_str_mv 10.1002/ange.202101986
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2545477079</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2545477079</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2026-499135472f60d91330f93d1defe088e98356680ecab812981c0a9d5f4eb0bbc3</originalsourceid><addsrcrecordid>eNqFkM9OAjEQxhujiYhePW_ieXHa_dceCSKSIB4gXptud6pLli22C4abj-Az-iSWYPToaWYyv--byUfINYUBBWC3qn3BAQNGgQqen5AezRiNkyIrTkkPIE1jzlJxTi68XwFAzgrRI-VCK2NsU319fN7VDnWHVXSvNEYLbMJU7-puHz0q_Vq3GJgZKtcGxDi7jp4DYJ2PrInmtg1bbXeqwbaLpm2HTgW5bf0lOTOq8Xj1U_tkeT9ejh7i2dNkOhrOYh2ezuNUCJpkacFMDlVoEzAiqWiFBoFzFDzJ8pwDalVyygSnGpSoMpNiCWWpkz65OdpunH3bou_kym5dGy5KlqXBuIBCBGpwpLSz3js0cuPqtXJ7SUEeYpSHGOVvjEEgjoL3usH9P7QczifjP-030oh55w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2545477079</pqid></control><display><type>article</type><title>Scaffold‐Directed Face Selectivity Machine‐Learned from Vectors of Non‐covalent Interactions</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Moskal, Martyna ; Beker, Wiktor ; Szymkuć, Sara ; Grzybowski, Bartosz A.</creator><creatorcontrib>Moskal, Martyna ; Beker, Wiktor ; Szymkuć, Sara ; Grzybowski, Bartosz A.</creatorcontrib><description>This work describes a method to vectorize and Machine‐Learn, ML, non‐covalent interactions responsible for scaffold‐directed reactions important in synthetic chemistry. Models trained on this representation predict correct face of approach in ca. 90 % of Michael additions or Diels–Alder cycloadditions. These accuracies are significantly higher than those based on traditional ML descriptors, energetic calculations, or intuition of experienced synthetic chemists. Our results also emphasize the importance of ML models being provided with relevant mechanistic knowledge; without such knowledge, these models cannot easily “transfer‐learn” and extrapolate to previously unseen reaction mechanisms. A machine‐learning, ML, model based on vectors of transition‐state interatomic contacts can predict face‐selectivity of Michael additions or Diels–Alder cycloadditions more accurately than traditional ML schemes, energetic calculations, or seasoned organic chemists.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.202101986</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Chemistry ; Chemists ; computer-aided synthesis ; machine learning ; Reaction mechanisms ; Scaffolds ; Selectivity</subject><ispartof>Angewandte Chemie, 2021-07, Vol.133 (28), p.15358-15363</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2026-499135472f60d91330f93d1defe088e98356680ecab812981c0a9d5f4eb0bbc3</citedby><cites>FETCH-LOGICAL-c2026-499135472f60d91330f93d1defe088e98356680ecab812981c0a9d5f4eb0bbc3</cites><orcidid>0000-0001-6613-4261</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Moskal, Martyna</creatorcontrib><creatorcontrib>Beker, Wiktor</creatorcontrib><creatorcontrib>Szymkuć, Sara</creatorcontrib><creatorcontrib>Grzybowski, Bartosz A.</creatorcontrib><title>Scaffold‐Directed Face Selectivity Machine‐Learned from Vectors of Non‐covalent Interactions</title><title>Angewandte Chemie</title><description>This work describes a method to vectorize and Machine‐Learn, ML, non‐covalent interactions responsible for scaffold‐directed reactions important in synthetic chemistry. Models trained on this representation predict correct face of approach in ca. 90 % of Michael additions or Diels–Alder cycloadditions. These accuracies are significantly higher than those based on traditional ML descriptors, energetic calculations, or intuition of experienced synthetic chemists. Our results also emphasize the importance of ML models being provided with relevant mechanistic knowledge; without such knowledge, these models cannot easily “transfer‐learn” and extrapolate to previously unseen reaction mechanisms. A machine‐learning, ML, model based on vectors of transition‐state interatomic contacts can predict face‐selectivity of Michael additions or Diels–Alder cycloadditions more accurately than traditional ML schemes, energetic calculations, or seasoned organic chemists.</description><subject>Chemistry</subject><subject>Chemists</subject><subject>computer-aided synthesis</subject><subject>machine learning</subject><subject>Reaction mechanisms</subject><subject>Scaffolds</subject><subject>Selectivity</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkM9OAjEQxhujiYhePW_ieXHa_dceCSKSIB4gXptud6pLli22C4abj-Az-iSWYPToaWYyv--byUfINYUBBWC3qn3BAQNGgQqen5AezRiNkyIrTkkPIE1jzlJxTi68XwFAzgrRI-VCK2NsU319fN7VDnWHVXSvNEYLbMJU7-puHz0q_Vq3GJgZKtcGxDi7jp4DYJ2PrInmtg1bbXeqwbaLpm2HTgW5bf0lOTOq8Xj1U_tkeT9ejh7i2dNkOhrOYh2ezuNUCJpkacFMDlVoEzAiqWiFBoFzFDzJ8pwDalVyygSnGpSoMpNiCWWpkz65OdpunH3bou_kym5dGy5KlqXBuIBCBGpwpLSz3js0cuPqtXJ7SUEeYpSHGOVvjEEgjoL3usH9P7QczifjP-030oh55w</recordid><startdate>20210705</startdate><enddate>20210705</enddate><creator>Moskal, Martyna</creator><creator>Beker, Wiktor</creator><creator>Szymkuć, Sara</creator><creator>Grzybowski, Bartosz A.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6613-4261</orcidid></search><sort><creationdate>20210705</creationdate><title>Scaffold‐Directed Face Selectivity Machine‐Learned from Vectors of Non‐covalent Interactions</title><author>Moskal, Martyna ; Beker, Wiktor ; Szymkuć, Sara ; Grzybowski, Bartosz A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2026-499135472f60d91330f93d1defe088e98356680ecab812981c0a9d5f4eb0bbc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemistry</topic><topic>Chemists</topic><topic>computer-aided synthesis</topic><topic>machine learning</topic><topic>Reaction mechanisms</topic><topic>Scaffolds</topic><topic>Selectivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moskal, Martyna</creatorcontrib><creatorcontrib>Beker, Wiktor</creatorcontrib><creatorcontrib>Szymkuć, Sara</creatorcontrib><creatorcontrib>Grzybowski, Bartosz A.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moskal, Martyna</au><au>Beker, Wiktor</au><au>Szymkuć, Sara</au><au>Grzybowski, Bartosz A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scaffold‐Directed Face Selectivity Machine‐Learned from Vectors of Non‐covalent Interactions</atitle><jtitle>Angewandte Chemie</jtitle><date>2021-07-05</date><risdate>2021</risdate><volume>133</volume><issue>28</issue><spage>15358</spage><epage>15363</epage><pages>15358-15363</pages><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>This work describes a method to vectorize and Machine‐Learn, ML, non‐covalent interactions responsible for scaffold‐directed reactions important in synthetic chemistry. Models trained on this representation predict correct face of approach in ca. 90 % of Michael additions or Diels–Alder cycloadditions. These accuracies are significantly higher than those based on traditional ML descriptors, energetic calculations, or intuition of experienced synthetic chemists. Our results also emphasize the importance of ML models being provided with relevant mechanistic knowledge; without such knowledge, these models cannot easily “transfer‐learn” and extrapolate to previously unseen reaction mechanisms. A machine‐learning, ML, model based on vectors of transition‐state interatomic contacts can predict face‐selectivity of Michael additions or Diels–Alder cycloadditions more accurately than traditional ML schemes, energetic calculations, or seasoned organic chemists.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.202101986</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-6613-4261</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0044-8249
ispartof Angewandte Chemie, 2021-07, Vol.133 (28), p.15358-15363
issn 0044-8249
1521-3757
language eng
recordid cdi_proquest_journals_2545477079
source Wiley-Blackwell Read & Publish Collection
subjects Chemistry
Chemists
computer-aided synthesis
machine learning
Reaction mechanisms
Scaffolds
Selectivity
title Scaffold‐Directed Face Selectivity Machine‐Learned from Vectors of Non‐covalent Interactions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A39%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scaffold%E2%80%90Directed%20Face%20Selectivity%20Machine%E2%80%90Learned%20from%20Vectors%20of%20Non%E2%80%90covalent%20Interactions&rft.jtitle=Angewandte%20Chemie&rft.au=Moskal,%20Martyna&rft.date=2021-07-05&rft.volume=133&rft.issue=28&rft.spage=15358&rft.epage=15363&rft.pages=15358-15363&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.202101986&rft_dat=%3Cproquest_cross%3E2545477079%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2026-499135472f60d91330f93d1defe088e98356680ecab812981c0a9d5f4eb0bbc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2545477079&rft_id=info:pmid/&rfr_iscdi=true