Loading…

Semantic annotation for computational pathology: Multidisciplinary experience and best practice recommendations

Recent advances in whole slide imaging (WSI) technology have led to the development of a myriad of computer vision and artificial intelligence (AI) based diagnostic, prognostic, and predictive algorithms. Computational Pathology (CPath) offers an integrated solution to utilize information embedded i...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2021-06
Main Authors: Wahab, Noorul, Miligy, Islam M, Dodd, Katherine, Sahota, Harvir, Toss, Michael, Lu, Wenqi, Jahanifar, Mostafa, Mohsin Bilal, Graham, Simon, Park, Young, Hadjigeorghiou, Giorgos, Bhalerao, Abhir, Lashen, Ayat, Ibrahim, Asmaa, Katayama, Ayaka, Ebili, Henry O, Parkin, Matthew, Sorell, Tom, Ahmed Raza, Shan E, Hero, Emily, Eldaly, Hesham, Tsang, Yee Wah, Gopalakrishnan, Kishore, Snead, David, Rakha, Emad, Rajpoot, Nasir, Minhas, Fayyaz
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Wahab, Noorul
Miligy, Islam M
Dodd, Katherine
Sahota, Harvir
Toss, Michael
Lu, Wenqi
Jahanifar, Mostafa
Mohsin Bilal
Graham, Simon
Park, Young
Hadjigeorghiou, Giorgos
Bhalerao, Abhir
Lashen, Ayat
Ibrahim, Asmaa
Katayama, Ayaka
Ebili, Henry O
Parkin, Matthew
Sorell, Tom
Ahmed Raza, Shan E
Hero, Emily
Eldaly, Hesham
Tsang, Yee Wah
Gopalakrishnan, Kishore
Snead, David
Rakha, Emad
Rajpoot, Nasir
Minhas, Fayyaz
description Recent advances in whole slide imaging (WSI) technology have led to the development of a myriad of computer vision and artificial intelligence (AI) based diagnostic, prognostic, and predictive algorithms. Computational Pathology (CPath) offers an integrated solution to utilize information embedded in pathology WSIs beyond what we obtain through visual assessment. For automated analysis of WSIs and validation of machine learning (ML) models, annotations at the slide, tissue and cellular levels are required. The annotation of important visual constructs in pathology images is an important component of CPath projects. Improper annotations can result in algorithms which are hard to interpret and can potentially produce inaccurate and inconsistent results. Despite the crucial role of annotations in CPath projects, there are no well-defined guidelines or best practices on how annotations should be carried out. In this paper, we address this shortcoming by presenting the experience and best practices acquired during the execution of a large-scale annotation exercise involving a multidisciplinary team of pathologists, ML experts and researchers as part of the Pathology image data Lake for Analytics, Knowledge and Education (PathLAKE) consortium. We present a real-world case study along with examples of different types of annotations, diagnostic algorithm, annotation data dictionary and annotation constructs. The analyses reported in this work highlight best practice recommendations that can be used as annotation guidelines over the lifecycle of a CPath project.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2545772418</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2545772418</sourcerecordid><originalsourceid>FETCH-proquest_journals_25457724183</originalsourceid><addsrcrecordid>eNqNzUEKwjAQBdAgCBb1DgOuC23a2uJWFDeudC8xHTUlzcQkBXt7g3oAV8OH_99MWMKLIk-bkvMZW3rfZVnG1zWvqiJhdMJemKAkCGMoiKDIwI0cSOrt8M1CgxXhQZru4waOgw6qVV4qq5URbgR8WXQKjcSItHBFH8A6IaOK4DBKPZr2Q_kFm96E9rj83Tlb7Xfn7SG1jp5DXF46Glx86S-8Kqu65mXeFP-13rUCTIc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2545772418</pqid></control><display><type>article</type><title>Semantic annotation for computational pathology: Multidisciplinary experience and best practice recommendations</title><source>ProQuest - Publicly Available Content Database</source><creator>Wahab, Noorul ; Miligy, Islam M ; Dodd, Katherine ; Sahota, Harvir ; Toss, Michael ; Lu, Wenqi ; Jahanifar, Mostafa ; Mohsin Bilal ; Graham, Simon ; Park, Young ; Hadjigeorghiou, Giorgos ; Bhalerao, Abhir ; Lashen, Ayat ; Ibrahim, Asmaa ; Katayama, Ayaka ; Ebili, Henry O ; Parkin, Matthew ; Sorell, Tom ; Ahmed Raza, Shan E ; Hero, Emily ; Eldaly, Hesham ; Tsang, Yee Wah ; Gopalakrishnan, Kishore ; Snead, David ; Rakha, Emad ; Rajpoot, Nasir ; Minhas, Fayyaz</creator><creatorcontrib>Wahab, Noorul ; Miligy, Islam M ; Dodd, Katherine ; Sahota, Harvir ; Toss, Michael ; Lu, Wenqi ; Jahanifar, Mostafa ; Mohsin Bilal ; Graham, Simon ; Park, Young ; Hadjigeorghiou, Giorgos ; Bhalerao, Abhir ; Lashen, Ayat ; Ibrahim, Asmaa ; Katayama, Ayaka ; Ebili, Henry O ; Parkin, Matthew ; Sorell, Tom ; Ahmed Raza, Shan E ; Hero, Emily ; Eldaly, Hesham ; Tsang, Yee Wah ; Gopalakrishnan, Kishore ; Snead, David ; Rakha, Emad ; Rajpoot, Nasir ; Minhas, Fayyaz</creatorcontrib><description>Recent advances in whole slide imaging (WSI) technology have led to the development of a myriad of computer vision and artificial intelligence (AI) based diagnostic, prognostic, and predictive algorithms. Computational Pathology (CPath) offers an integrated solution to utilize information embedded in pathology WSIs beyond what we obtain through visual assessment. For automated analysis of WSIs and validation of machine learning (ML) models, annotations at the slide, tissue and cellular levels are required. The annotation of important visual constructs in pathology images is an important component of CPath projects. Improper annotations can result in algorithms which are hard to interpret and can potentially produce inaccurate and inconsistent results. Despite the crucial role of annotations in CPath projects, there are no well-defined guidelines or best practices on how annotations should be carried out. In this paper, we address this shortcoming by presenting the experience and best practices acquired during the execution of a large-scale annotation exercise involving a multidisciplinary team of pathologists, ML experts and researchers as part of the Pathology image data Lake for Analytics, Knowledge and Education (PathLAKE) consortium. We present a real-world case study along with examples of different types of annotations, diagnostic algorithm, annotation data dictionary and annotation constructs. The analyses reported in this work highlight best practice recommendations that can be used as annotation guidelines over the lifecycle of a CPath project.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Annotations ; Artificial intelligence ; Best practice ; Computer vision ; Consortia ; Diagnostic systems ; Guidelines ; Machine learning ; Pathology</subject><ispartof>arXiv.org, 2021-06</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2545772418?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Wahab, Noorul</creatorcontrib><creatorcontrib>Miligy, Islam M</creatorcontrib><creatorcontrib>Dodd, Katherine</creatorcontrib><creatorcontrib>Sahota, Harvir</creatorcontrib><creatorcontrib>Toss, Michael</creatorcontrib><creatorcontrib>Lu, Wenqi</creatorcontrib><creatorcontrib>Jahanifar, Mostafa</creatorcontrib><creatorcontrib>Mohsin Bilal</creatorcontrib><creatorcontrib>Graham, Simon</creatorcontrib><creatorcontrib>Park, Young</creatorcontrib><creatorcontrib>Hadjigeorghiou, Giorgos</creatorcontrib><creatorcontrib>Bhalerao, Abhir</creatorcontrib><creatorcontrib>Lashen, Ayat</creatorcontrib><creatorcontrib>Ibrahim, Asmaa</creatorcontrib><creatorcontrib>Katayama, Ayaka</creatorcontrib><creatorcontrib>Ebili, Henry O</creatorcontrib><creatorcontrib>Parkin, Matthew</creatorcontrib><creatorcontrib>Sorell, Tom</creatorcontrib><creatorcontrib>Ahmed Raza, Shan E</creatorcontrib><creatorcontrib>Hero, Emily</creatorcontrib><creatorcontrib>Eldaly, Hesham</creatorcontrib><creatorcontrib>Tsang, Yee Wah</creatorcontrib><creatorcontrib>Gopalakrishnan, Kishore</creatorcontrib><creatorcontrib>Snead, David</creatorcontrib><creatorcontrib>Rakha, Emad</creatorcontrib><creatorcontrib>Rajpoot, Nasir</creatorcontrib><creatorcontrib>Minhas, Fayyaz</creatorcontrib><title>Semantic annotation for computational pathology: Multidisciplinary experience and best practice recommendations</title><title>arXiv.org</title><description>Recent advances in whole slide imaging (WSI) technology have led to the development of a myriad of computer vision and artificial intelligence (AI) based diagnostic, prognostic, and predictive algorithms. Computational Pathology (CPath) offers an integrated solution to utilize information embedded in pathology WSIs beyond what we obtain through visual assessment. For automated analysis of WSIs and validation of machine learning (ML) models, annotations at the slide, tissue and cellular levels are required. The annotation of important visual constructs in pathology images is an important component of CPath projects. Improper annotations can result in algorithms which are hard to interpret and can potentially produce inaccurate and inconsistent results. Despite the crucial role of annotations in CPath projects, there are no well-defined guidelines or best practices on how annotations should be carried out. In this paper, we address this shortcoming by presenting the experience and best practices acquired during the execution of a large-scale annotation exercise involving a multidisciplinary team of pathologists, ML experts and researchers as part of the Pathology image data Lake for Analytics, Knowledge and Education (PathLAKE) consortium. We present a real-world case study along with examples of different types of annotations, diagnostic algorithm, annotation data dictionary and annotation constructs. The analyses reported in this work highlight best practice recommendations that can be used as annotation guidelines over the lifecycle of a CPath project.</description><subject>Algorithms</subject><subject>Annotations</subject><subject>Artificial intelligence</subject><subject>Best practice</subject><subject>Computer vision</subject><subject>Consortia</subject><subject>Diagnostic systems</subject><subject>Guidelines</subject><subject>Machine learning</subject><subject>Pathology</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNzUEKwjAQBdAgCBb1DgOuC23a2uJWFDeudC8xHTUlzcQkBXt7g3oAV8OH_99MWMKLIk-bkvMZW3rfZVnG1zWvqiJhdMJemKAkCGMoiKDIwI0cSOrt8M1CgxXhQZru4waOgw6qVV4qq5URbgR8WXQKjcSItHBFH8A6IaOK4DBKPZr2Q_kFm96E9rj83Tlb7Xfn7SG1jp5DXF46Glx86S-8Kqu65mXeFP-13rUCTIc</recordid><startdate>20210625</startdate><enddate>20210625</enddate><creator>Wahab, Noorul</creator><creator>Miligy, Islam M</creator><creator>Dodd, Katherine</creator><creator>Sahota, Harvir</creator><creator>Toss, Michael</creator><creator>Lu, Wenqi</creator><creator>Jahanifar, Mostafa</creator><creator>Mohsin Bilal</creator><creator>Graham, Simon</creator><creator>Park, Young</creator><creator>Hadjigeorghiou, Giorgos</creator><creator>Bhalerao, Abhir</creator><creator>Lashen, Ayat</creator><creator>Ibrahim, Asmaa</creator><creator>Katayama, Ayaka</creator><creator>Ebili, Henry O</creator><creator>Parkin, Matthew</creator><creator>Sorell, Tom</creator><creator>Ahmed Raza, Shan E</creator><creator>Hero, Emily</creator><creator>Eldaly, Hesham</creator><creator>Tsang, Yee Wah</creator><creator>Gopalakrishnan, Kishore</creator><creator>Snead, David</creator><creator>Rakha, Emad</creator><creator>Rajpoot, Nasir</creator><creator>Minhas, Fayyaz</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210625</creationdate><title>Semantic annotation for computational pathology: Multidisciplinary experience and best practice recommendations</title><author>Wahab, Noorul ; Miligy, Islam M ; Dodd, Katherine ; Sahota, Harvir ; Toss, Michael ; Lu, Wenqi ; Jahanifar, Mostafa ; Mohsin Bilal ; Graham, Simon ; Park, Young ; Hadjigeorghiou, Giorgos ; Bhalerao, Abhir ; Lashen, Ayat ; Ibrahim, Asmaa ; Katayama, Ayaka ; Ebili, Henry O ; Parkin, Matthew ; Sorell, Tom ; Ahmed Raza, Shan E ; Hero, Emily ; Eldaly, Hesham ; Tsang, Yee Wah ; Gopalakrishnan, Kishore ; Snead, David ; Rakha, Emad ; Rajpoot, Nasir ; Minhas, Fayyaz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25457724183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Annotations</topic><topic>Artificial intelligence</topic><topic>Best practice</topic><topic>Computer vision</topic><topic>Consortia</topic><topic>Diagnostic systems</topic><topic>Guidelines</topic><topic>Machine learning</topic><topic>Pathology</topic><toplevel>online_resources</toplevel><creatorcontrib>Wahab, Noorul</creatorcontrib><creatorcontrib>Miligy, Islam M</creatorcontrib><creatorcontrib>Dodd, Katherine</creatorcontrib><creatorcontrib>Sahota, Harvir</creatorcontrib><creatorcontrib>Toss, Michael</creatorcontrib><creatorcontrib>Lu, Wenqi</creatorcontrib><creatorcontrib>Jahanifar, Mostafa</creatorcontrib><creatorcontrib>Mohsin Bilal</creatorcontrib><creatorcontrib>Graham, Simon</creatorcontrib><creatorcontrib>Park, Young</creatorcontrib><creatorcontrib>Hadjigeorghiou, Giorgos</creatorcontrib><creatorcontrib>Bhalerao, Abhir</creatorcontrib><creatorcontrib>Lashen, Ayat</creatorcontrib><creatorcontrib>Ibrahim, Asmaa</creatorcontrib><creatorcontrib>Katayama, Ayaka</creatorcontrib><creatorcontrib>Ebili, Henry O</creatorcontrib><creatorcontrib>Parkin, Matthew</creatorcontrib><creatorcontrib>Sorell, Tom</creatorcontrib><creatorcontrib>Ahmed Raza, Shan E</creatorcontrib><creatorcontrib>Hero, Emily</creatorcontrib><creatorcontrib>Eldaly, Hesham</creatorcontrib><creatorcontrib>Tsang, Yee Wah</creatorcontrib><creatorcontrib>Gopalakrishnan, Kishore</creatorcontrib><creatorcontrib>Snead, David</creatorcontrib><creatorcontrib>Rakha, Emad</creatorcontrib><creatorcontrib>Rajpoot, Nasir</creatorcontrib><creatorcontrib>Minhas, Fayyaz</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wahab, Noorul</au><au>Miligy, Islam M</au><au>Dodd, Katherine</au><au>Sahota, Harvir</au><au>Toss, Michael</au><au>Lu, Wenqi</au><au>Jahanifar, Mostafa</au><au>Mohsin Bilal</au><au>Graham, Simon</au><au>Park, Young</au><au>Hadjigeorghiou, Giorgos</au><au>Bhalerao, Abhir</au><au>Lashen, Ayat</au><au>Ibrahim, Asmaa</au><au>Katayama, Ayaka</au><au>Ebili, Henry O</au><au>Parkin, Matthew</au><au>Sorell, Tom</au><au>Ahmed Raza, Shan E</au><au>Hero, Emily</au><au>Eldaly, Hesham</au><au>Tsang, Yee Wah</au><au>Gopalakrishnan, Kishore</au><au>Snead, David</au><au>Rakha, Emad</au><au>Rajpoot, Nasir</au><au>Minhas, Fayyaz</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Semantic annotation for computational pathology: Multidisciplinary experience and best practice recommendations</atitle><jtitle>arXiv.org</jtitle><date>2021-06-25</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>Recent advances in whole slide imaging (WSI) technology have led to the development of a myriad of computer vision and artificial intelligence (AI) based diagnostic, prognostic, and predictive algorithms. Computational Pathology (CPath) offers an integrated solution to utilize information embedded in pathology WSIs beyond what we obtain through visual assessment. For automated analysis of WSIs and validation of machine learning (ML) models, annotations at the slide, tissue and cellular levels are required. The annotation of important visual constructs in pathology images is an important component of CPath projects. Improper annotations can result in algorithms which are hard to interpret and can potentially produce inaccurate and inconsistent results. Despite the crucial role of annotations in CPath projects, there are no well-defined guidelines or best practices on how annotations should be carried out. In this paper, we address this shortcoming by presenting the experience and best practices acquired during the execution of a large-scale annotation exercise involving a multidisciplinary team of pathologists, ML experts and researchers as part of the Pathology image data Lake for Analytics, Knowledge and Education (PathLAKE) consortium. We present a real-world case study along with examples of different types of annotations, diagnostic algorithm, annotation data dictionary and annotation constructs. The analyses reported in this work highlight best practice recommendations that can be used as annotation guidelines over the lifecycle of a CPath project.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_2545772418
source ProQuest - Publicly Available Content Database
subjects Algorithms
Annotations
Artificial intelligence
Best practice
Computer vision
Consortia
Diagnostic systems
Guidelines
Machine learning
Pathology
title Semantic annotation for computational pathology: Multidisciplinary experience and best practice recommendations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A12%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Semantic%20annotation%20for%20computational%20pathology:%20Multidisciplinary%20experience%20and%20best%20practice%20recommendations&rft.jtitle=arXiv.org&rft.au=Wahab,%20Noorul&rft.date=2021-06-25&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2545772418%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_25457724183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2545772418&rft_id=info:pmid/&rfr_iscdi=true