Loading…
Research on Defect Classification and Detection Technology of Image Processing Collected by Computer
The paper uses median filter computer algorithms to detect and classify machine component image defects using image processing, pattern recognition and machine vision theories. In the experiment, automatic extraction of defect images and minimization of defect images are completed to reduce processi...
Saved in:
Published in: | Journal of physics. Conference series 2021-06, Vol.1952 (2), p.22045 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c2745-2ba6774bb97de1c13a94af7677b1d1820a2ee29b9d2013a3dbb151496f720e0e3 |
container_end_page | |
container_issue | 2 |
container_start_page | 22045 |
container_title | Journal of physics. Conference series |
container_volume | 1952 |
creator | Luo, Xiaojing Cai, Guangxing |
description | The paper uses median filter computer algorithms to detect and classify machine component image defects using image processing, pattern recognition and machine vision theories. In the experiment, automatic extraction of defect images and minimization of defect images are completed to reduce processing volume and storage space requirements, and automatically determine defect categories. The article processes the collected defect images, and the experimental results prove that the method can correctly realize the detection of track surface defects and has certain applicability. |
doi_str_mv | 10.1088/1742-6596/1952/2/022045 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2546088277</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2546088277</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2745-2ba6774bb97de1c13a94af7677b1d1820a2ee29b9d2013a3dbb151496f720e0e3</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhoMoOKe_wYB3wmySfqS9lPo1ERw6r0PSnGwdXVOT7mL_3pTKRBDMzck57_ueAw9Cl5TcUJLnEeUJm2VpkUW0SFnEIsIYSdIjNDkox4d_np-iM-83hMTh8QnSb-BBumqNbYvvwEDV47KR3temrmRfh6lsdVD6oAzdEqp1axu72mNr8HwrV4AXzlYQIu0Kl7ZpghM0VvvQbLtdD-4cnRjZeLj4rlP08XC_LJ9mL6-P8_L2ZVYxnqQzpmTGeaJUwTXQisaySKThYaaopjkjkgGwQhWakSDGWima0qTIDGcECMRTdDXu7Zz93IHvxcbuXBtOCpYmWaDFOA8uProqZ713YETn6q10e0GJGJCKAZYYwIkBqWBiRBqS8Zisbfez-v_U9R-p50X5_tsoOm3iL0Rohgo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2546088277</pqid></control><display><type>article</type><title>Research on Defect Classification and Detection Technology of Image Processing Collected by Computer</title><source>Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><creator>Luo, Xiaojing ; Cai, Guangxing</creator><creatorcontrib>Luo, Xiaojing ; Cai, Guangxing</creatorcontrib><description>The paper uses median filter computer algorithms to detect and classify machine component image defects using image processing, pattern recognition and machine vision theories. In the experiment, automatic extraction of defect images and minimization of defect images are completed to reduce processing volume and storage space requirements, and automatically determine defect categories. The article processes the collected defect images, and the experimental results prove that the method can correctly realize the detection of track surface defects and has certain applicability.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1952/2/022045</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Algorithms ; Image classification ; Image processing ; Machine vision ; Object recognition ; Pattern recognition ; Physics ; Surface defects</subject><ispartof>Journal of physics. Conference series, 2021-06, Vol.1952 (2), p.22045</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2745-2ba6774bb97de1c13a94af7677b1d1820a2ee29b9d2013a3dbb151496f720e0e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2546088277?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566</link.rule.ids></links><search><creatorcontrib>Luo, Xiaojing</creatorcontrib><creatorcontrib>Cai, Guangxing</creatorcontrib><title>Research on Defect Classification and Detection Technology of Image Processing Collected by Computer</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>The paper uses median filter computer algorithms to detect and classify machine component image defects using image processing, pattern recognition and machine vision theories. In the experiment, automatic extraction of defect images and minimization of defect images are completed to reduce processing volume and storage space requirements, and automatically determine defect categories. The article processes the collected defect images, and the experimental results prove that the method can correctly realize the detection of track surface defects and has certain applicability.</description><subject>Algorithms</subject><subject>Image classification</subject><subject>Image processing</subject><subject>Machine vision</subject><subject>Object recognition</subject><subject>Pattern recognition</subject><subject>Physics</subject><subject>Surface defects</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqFkF1LwzAUhoMoOKe_wYB3wmySfqS9lPo1ERw6r0PSnGwdXVOT7mL_3pTKRBDMzck57_ueAw9Cl5TcUJLnEeUJm2VpkUW0SFnEIsIYSdIjNDkox4d_np-iM-83hMTh8QnSb-BBumqNbYvvwEDV47KR3temrmRfh6lsdVD6oAzdEqp1axu72mNr8HwrV4AXzlYQIu0Kl7ZpghM0VvvQbLtdD-4cnRjZeLj4rlP08XC_LJ9mL6-P8_L2ZVYxnqQzpmTGeaJUwTXQisaySKThYaaopjkjkgGwQhWakSDGWima0qTIDGcECMRTdDXu7Zz93IHvxcbuXBtOCpYmWaDFOA8uProqZ713YETn6q10e0GJGJCKAZYYwIkBqWBiRBqS8Zisbfez-v_U9R-p50X5_tsoOm3iL0Rohgo</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Luo, Xiaojing</creator><creator>Cai, Guangxing</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20210601</creationdate><title>Research on Defect Classification and Detection Technology of Image Processing Collected by Computer</title><author>Luo, Xiaojing ; Cai, Guangxing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2745-2ba6774bb97de1c13a94af7677b1d1820a2ee29b9d2013a3dbb151496f720e0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Image classification</topic><topic>Image processing</topic><topic>Machine vision</topic><topic>Object recognition</topic><topic>Pattern recognition</topic><topic>Physics</topic><topic>Surface defects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Xiaojing</creatorcontrib><creatorcontrib>Cai, Guangxing</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Xiaojing</au><au>Cai, Guangxing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on Defect Classification and Detection Technology of Image Processing Collected by Computer</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2021-06-01</date><risdate>2021</risdate><volume>1952</volume><issue>2</issue><spage>22045</spage><pages>22045-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>The paper uses median filter computer algorithms to detect and classify machine component image defects using image processing, pattern recognition and machine vision theories. In the experiment, automatic extraction of defect images and minimization of defect images are completed to reduce processing volume and storage space requirements, and automatically determine defect categories. The article processes the collected defect images, and the experimental results prove that the method can correctly realize the detection of track surface defects and has certain applicability.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1952/2/022045</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-6588 |
ispartof | Journal of physics. Conference series, 2021-06, Vol.1952 (2), p.22045 |
issn | 1742-6588 1742-6596 |
language | eng |
recordid | cdi_proquest_journals_2546088277 |
source | Publicly Available Content Database; Free Full-Text Journals in Chemistry |
subjects | Algorithms Image classification Image processing Machine vision Object recognition Pattern recognition Physics Surface defects |
title | Research on Defect Classification and Detection Technology of Image Processing Collected by Computer |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T01%3A14%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20Defect%20Classification%20and%20Detection%20Technology%20of%20Image%20Processing%20Collected%20by%20Computer&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Luo,%20Xiaojing&rft.date=2021-06-01&rft.volume=1952&rft.issue=2&rft.spage=22045&rft.pages=22045-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1952/2/022045&rft_dat=%3Cproquest_cross%3E2546088277%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2745-2ba6774bb97de1c13a94af7677b1d1820a2ee29b9d2013a3dbb151496f720e0e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2546088277&rft_id=info:pmid/&rfr_iscdi=true |