Loading…

Research on Defect Classification and Detection Technology of Image Processing Collected by Computer

The paper uses median filter computer algorithms to detect and classify machine component image defects using image processing, pattern recognition and machine vision theories. In the experiment, automatic extraction of defect images and minimization of defect images are completed to reduce processi...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. Conference series 2021-06, Vol.1952 (2), p.22045
Main Authors: Luo, Xiaojing, Cai, Guangxing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2745-2ba6774bb97de1c13a94af7677b1d1820a2ee29b9d2013a3dbb151496f720e0e3
container_end_page
container_issue 2
container_start_page 22045
container_title Journal of physics. Conference series
container_volume 1952
creator Luo, Xiaojing
Cai, Guangxing
description The paper uses median filter computer algorithms to detect and classify machine component image defects using image processing, pattern recognition and machine vision theories. In the experiment, automatic extraction of defect images and minimization of defect images are completed to reduce processing volume and storage space requirements, and automatically determine defect categories. The article processes the collected defect images, and the experimental results prove that the method can correctly realize the detection of track surface defects and has certain applicability.
doi_str_mv 10.1088/1742-6596/1952/2/022045
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2546088277</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2546088277</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2745-2ba6774bb97de1c13a94af7677b1d1820a2ee29b9d2013a3dbb151496f720e0e3</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhoMoOKe_wYB3wmySfqS9lPo1ERw6r0PSnGwdXVOT7mL_3pTKRBDMzck57_ueAw9Cl5TcUJLnEeUJm2VpkUW0SFnEIsIYSdIjNDkox4d_np-iM-83hMTh8QnSb-BBumqNbYvvwEDV47KR3temrmRfh6lsdVD6oAzdEqp1axu72mNr8HwrV4AXzlYQIu0Kl7ZpghM0VvvQbLtdD-4cnRjZeLj4rlP08XC_LJ9mL6-P8_L2ZVYxnqQzpmTGeaJUwTXQisaySKThYaaopjkjkgGwQhWakSDGWima0qTIDGcECMRTdDXu7Zz93IHvxcbuXBtOCpYmWaDFOA8uProqZ713YETn6q10e0GJGJCKAZYYwIkBqWBiRBqS8Zisbfez-v_U9R-p50X5_tsoOm3iL0Rohgo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2546088277</pqid></control><display><type>article</type><title>Research on Defect Classification and Detection Technology of Image Processing Collected by Computer</title><source>Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><creator>Luo, Xiaojing ; Cai, Guangxing</creator><creatorcontrib>Luo, Xiaojing ; Cai, Guangxing</creatorcontrib><description>The paper uses median filter computer algorithms to detect and classify machine component image defects using image processing, pattern recognition and machine vision theories. In the experiment, automatic extraction of defect images and minimization of defect images are completed to reduce processing volume and storage space requirements, and automatically determine defect categories. The article processes the collected defect images, and the experimental results prove that the method can correctly realize the detection of track surface defects and has certain applicability.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1952/2/022045</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Algorithms ; Image classification ; Image processing ; Machine vision ; Object recognition ; Pattern recognition ; Physics ; Surface defects</subject><ispartof>Journal of physics. Conference series, 2021-06, Vol.1952 (2), p.22045</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2745-2ba6774bb97de1c13a94af7677b1d1820a2ee29b9d2013a3dbb151496f720e0e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2546088277?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566</link.rule.ids></links><search><creatorcontrib>Luo, Xiaojing</creatorcontrib><creatorcontrib>Cai, Guangxing</creatorcontrib><title>Research on Defect Classification and Detection Technology of Image Processing Collected by Computer</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>The paper uses median filter computer algorithms to detect and classify machine component image defects using image processing, pattern recognition and machine vision theories. In the experiment, automatic extraction of defect images and minimization of defect images are completed to reduce processing volume and storage space requirements, and automatically determine defect categories. The article processes the collected defect images, and the experimental results prove that the method can correctly realize the detection of track surface defects and has certain applicability.</description><subject>Algorithms</subject><subject>Image classification</subject><subject>Image processing</subject><subject>Machine vision</subject><subject>Object recognition</subject><subject>Pattern recognition</subject><subject>Physics</subject><subject>Surface defects</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqFkF1LwzAUhoMoOKe_wYB3wmySfqS9lPo1ERw6r0PSnGwdXVOT7mL_3pTKRBDMzck57_ueAw9Cl5TcUJLnEeUJm2VpkUW0SFnEIsIYSdIjNDkox4d_np-iM-83hMTh8QnSb-BBumqNbYvvwEDV47KR3temrmRfh6lsdVD6oAzdEqp1axu72mNr8HwrV4AXzlYQIu0Kl7ZpghM0VvvQbLtdD-4cnRjZeLj4rlP08XC_LJ9mL6-P8_L2ZVYxnqQzpmTGeaJUwTXQisaySKThYaaopjkjkgGwQhWakSDGWima0qTIDGcECMRTdDXu7Zz93IHvxcbuXBtOCpYmWaDFOA8uProqZ713YETn6q10e0GJGJCKAZYYwIkBqWBiRBqS8Zisbfez-v_U9R-p50X5_tsoOm3iL0Rohgo</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Luo, Xiaojing</creator><creator>Cai, Guangxing</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20210601</creationdate><title>Research on Defect Classification and Detection Technology of Image Processing Collected by Computer</title><author>Luo, Xiaojing ; Cai, Guangxing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2745-2ba6774bb97de1c13a94af7677b1d1820a2ee29b9d2013a3dbb151496f720e0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Image classification</topic><topic>Image processing</topic><topic>Machine vision</topic><topic>Object recognition</topic><topic>Pattern recognition</topic><topic>Physics</topic><topic>Surface defects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Xiaojing</creatorcontrib><creatorcontrib>Cai, Guangxing</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Xiaojing</au><au>Cai, Guangxing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on Defect Classification and Detection Technology of Image Processing Collected by Computer</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2021-06-01</date><risdate>2021</risdate><volume>1952</volume><issue>2</issue><spage>22045</spage><pages>22045-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>The paper uses median filter computer algorithms to detect and classify machine component image defects using image processing, pattern recognition and machine vision theories. In the experiment, automatic extraction of defect images and minimization of defect images are completed to reduce processing volume and storage space requirements, and automatically determine defect categories. The article processes the collected defect images, and the experimental results prove that the method can correctly realize the detection of track surface defects and has certain applicability.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1952/2/022045</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2021-06, Vol.1952 (2), p.22045
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_2546088277
source Publicly Available Content Database; Free Full-Text Journals in Chemistry
subjects Algorithms
Image classification
Image processing
Machine vision
Object recognition
Pattern recognition
Physics
Surface defects
title Research on Defect Classification and Detection Technology of Image Processing Collected by Computer
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T01%3A14%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20Defect%20Classification%20and%20Detection%20Technology%20of%20Image%20Processing%20Collected%20by%20Computer&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Luo,%20Xiaojing&rft.date=2021-06-01&rft.volume=1952&rft.issue=2&rft.spage=22045&rft.pages=22045-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1952/2/022045&rft_dat=%3Cproquest_cross%3E2546088277%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2745-2ba6774bb97de1c13a94af7677b1d1820a2ee29b9d2013a3dbb151496f720e0e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2546088277&rft_id=info:pmid/&rfr_iscdi=true