Loading…

Application of a dagger probe for soil dielectric permittivity measurement by TDR

•Dagger probe model for measuring soil moisture and dielectric permittivity.•Numerical simulations of the dagger probe.•The field strength distribution around the dagger probe.•Laboratory measurements for sand with different moisture and electrical conductivity. The most basic parameter of soil is v...

Full description

Saved in:
Bibliographic Details
Published in:Measurement : journal of the International Measurement Confederation 2021-06, Vol.178, p.109368, Article 109368
Main Authors: Majcher, Jacek, Kafarski, Marcin, Wilczek, Andrzej, Szypłowska, Agnieszka, Lewandowski, Arkadiusz, Woszczyk, Aleksandra, Skierucha, Wojciech
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c400t-536dab92d669dfa950e611648f7014a69ae5c512cf1bab75bd296e0bfee34f5e3
cites cdi_FETCH-LOGICAL-c400t-536dab92d669dfa950e611648f7014a69ae5c512cf1bab75bd296e0bfee34f5e3
container_end_page
container_issue
container_start_page 109368
container_title Measurement : journal of the International Measurement Confederation
container_volume 178
creator Majcher, Jacek
Kafarski, Marcin
Wilczek, Andrzej
Szypłowska, Agnieszka
Lewandowski, Arkadiusz
Woszczyk, Aleksandra
Skierucha, Wojciech
description •Dagger probe model for measuring soil moisture and dielectric permittivity.•Numerical simulations of the dagger probe.•The field strength distribution around the dagger probe.•Laboratory measurements for sand with different moisture and electrical conductivity. The most basic parameter of soil is volumetric water content (VWC). This parameter is typically determined indirectly, based on other parameters. Currently, a widely used method for indirect VWC determination is a method which is based on soil dielectric permittivity (DP) measurement, using the well-known Topp formula. The paper presents a novel probe for soil VWC and electrical conductivity (EC) measurement employing the above method. The new probe is going to be adopted on a mobile plant-watering machines used in precise agriculture e.g. for plants watering, thus it features a robust mechanical design and allows for instantaneous readout of VWC and EC values. The design of the probe mimics a dagger with three flat conductors forming a short-circuited coplanar waveguide with the space between the conductors filled with a mineral cold-curing resin. The resin filling the space between the bars improves the mechanical stiffness of the probe and ensures constant electrical parameters, which increases the measurement accuracy. In the first step, Ansys HFSS software was used to perform electromagnetic (EM), numerical simulations for the proposed solution, in order to determine the optimal electrical parameters of the probe. Next, a probe prototype was made to carry out laboratory tests. The measurements were performed with the use of a vector network analyzer (VNA) in the frequency range (3.74 MHz − 3 GHz). The measured complex reflection coefficients were transformed into the time domain with the use of the inverse Discrete Fourier Transform (IDFT). Based on the time distance between the reflections of an electric pulse traveling along the probe's sensing element, bulk dielectric permittivity of soil surrounding the probe can be calculated. A linear relation between the square root of DP and the pulse propagation time was obtained. Also, the probe was calibrated for bulk electrical conductivity measurements.
doi_str_mv 10.1016/j.measurement.2021.109368
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2546140530</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263224121003638</els_id><sourcerecordid>2546140530</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-536dab92d669dfa950e611648f7014a69ae5c512cf1bab75bd296e0bfee34f5e3</originalsourceid><addsrcrecordid>eNqNkEtLAzEQx4MoWKvfIeJ5a97tHkt9QkGUCt5CNjspWXabNUmFfnu3rIcePQ0M_8fMD6FbSmaUUHXfzDowaR-hg12eMcLosC-5WpyhCV3MeSEo-zpHE8IULxgT9BJdpdQQQhQv1QS9L_u-9dZkH3Y4OGxwbbZbiLiPoQLsQsQp-BbXHlqwOXqLe4idz9n_-HzAJ-24OuDNw8c1unCmTXDzN6fo8-lxs3op1m_Pr6vlurCCkFxIrmpTlaxWqqydKSUBRakSCzcnVBhVGpBWUmYdrUw1l1XNSgWkcgBcOAl8iu7G3OHS7z2krJuwj7uhUjMpFBVEcjKoylFlY0gpgtN99J2JB02JPhLUjT75QR8J6pHg4F2NXhje-PEQdbIedhZqHwcWug7-Hym_vRGA2g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2546140530</pqid></control><display><type>article</type><title>Application of a dagger probe for soil dielectric permittivity measurement by TDR</title><source>ScienceDirect Journals</source><creator>Majcher, Jacek ; Kafarski, Marcin ; Wilczek, Andrzej ; Szypłowska, Agnieszka ; Lewandowski, Arkadiusz ; Woszczyk, Aleksandra ; Skierucha, Wojciech</creator><creatorcontrib>Majcher, Jacek ; Kafarski, Marcin ; Wilczek, Andrzej ; Szypłowska, Agnieszka ; Lewandowski, Arkadiusz ; Woszczyk, Aleksandra ; Skierucha, Wojciech</creatorcontrib><description>•Dagger probe model for measuring soil moisture and dielectric permittivity.•Numerical simulations of the dagger probe.•The field strength distribution around the dagger probe.•Laboratory measurements for sand with different moisture and electrical conductivity. The most basic parameter of soil is volumetric water content (VWC). This parameter is typically determined indirectly, based on other parameters. Currently, a widely used method for indirect VWC determination is a method which is based on soil dielectric permittivity (DP) measurement, using the well-known Topp formula. The paper presents a novel probe for soil VWC and electrical conductivity (EC) measurement employing the above method. The new probe is going to be adopted on a mobile plant-watering machines used in precise agriculture e.g. for plants watering, thus it features a robust mechanical design and allows for instantaneous readout of VWC and EC values. The design of the probe mimics a dagger with three flat conductors forming a short-circuited coplanar waveguide with the space between the conductors filled with a mineral cold-curing resin. The resin filling the space between the bars improves the mechanical stiffness of the probe and ensures constant electrical parameters, which increases the measurement accuracy. In the first step, Ansys HFSS software was used to perform electromagnetic (EM), numerical simulations for the proposed solution, in order to determine the optimal electrical parameters of the probe. Next, a probe prototype was made to carry out laboratory tests. The measurements were performed with the use of a vector network analyzer (VNA) in the frequency range (3.74 MHz − 3 GHz). The measured complex reflection coefficients were transformed into the time domain with the use of the inverse Discrete Fourier Transform (IDFT). Based on the time distance between the reflections of an electric pulse traveling along the probe's sensing element, bulk dielectric permittivity of soil surrounding the probe can be calculated. A linear relation between the square root of DP and the pulse propagation time was obtained. Also, the probe was calibrated for bulk electrical conductivity measurements.</description><identifier>ISSN: 0263-2241</identifier><identifier>EISSN: 1873-412X</identifier><identifier>DOI: 10.1016/j.measurement.2021.109368</identifier><language>eng</language><publisher>London: Elsevier Ltd</publisher><subject>CAD ; Computer aided design ; Conductivity ; Conductors ; Coplanar waveguides ; Dagger probe ; Dielectric permittivity ; Dielectric properties ; Dielectrics ; Electrical resistivity ; Electromagnetics ; Flat conductors ; Fourier transforms ; Frequency ranges ; Laboratory tests ; Measurement ; Moisture content ; Network analysers ; Parameters ; Permittivity ; Pulse propagation ; Resins ; Robustness (mathematics) ; Soil moisture ; Soil water ; Soils ; Stiffness ; TDR method ; Volumetric analysis</subject><ispartof>Measurement : journal of the International Measurement Confederation, 2021-06, Vol.178, p.109368, Article 109368</ispartof><rights>2021 The Authors</rights><rights>Copyright Elsevier Science Ltd. Jun 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-536dab92d669dfa950e611648f7014a69ae5c512cf1bab75bd296e0bfee34f5e3</citedby><cites>FETCH-LOGICAL-c400t-536dab92d669dfa950e611648f7014a69ae5c512cf1bab75bd296e0bfee34f5e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Majcher, Jacek</creatorcontrib><creatorcontrib>Kafarski, Marcin</creatorcontrib><creatorcontrib>Wilczek, Andrzej</creatorcontrib><creatorcontrib>Szypłowska, Agnieszka</creatorcontrib><creatorcontrib>Lewandowski, Arkadiusz</creatorcontrib><creatorcontrib>Woszczyk, Aleksandra</creatorcontrib><creatorcontrib>Skierucha, Wojciech</creatorcontrib><title>Application of a dagger probe for soil dielectric permittivity measurement by TDR</title><title>Measurement : journal of the International Measurement Confederation</title><description>•Dagger probe model for measuring soil moisture and dielectric permittivity.•Numerical simulations of the dagger probe.•The field strength distribution around the dagger probe.•Laboratory measurements for sand with different moisture and electrical conductivity. The most basic parameter of soil is volumetric water content (VWC). This parameter is typically determined indirectly, based on other parameters. Currently, a widely used method for indirect VWC determination is a method which is based on soil dielectric permittivity (DP) measurement, using the well-known Topp formula. The paper presents a novel probe for soil VWC and electrical conductivity (EC) measurement employing the above method. The new probe is going to be adopted on a mobile plant-watering machines used in precise agriculture e.g. for plants watering, thus it features a robust mechanical design and allows for instantaneous readout of VWC and EC values. The design of the probe mimics a dagger with three flat conductors forming a short-circuited coplanar waveguide with the space between the conductors filled with a mineral cold-curing resin. The resin filling the space between the bars improves the mechanical stiffness of the probe and ensures constant electrical parameters, which increases the measurement accuracy. In the first step, Ansys HFSS software was used to perform electromagnetic (EM), numerical simulations for the proposed solution, in order to determine the optimal electrical parameters of the probe. Next, a probe prototype was made to carry out laboratory tests. The measurements were performed with the use of a vector network analyzer (VNA) in the frequency range (3.74 MHz − 3 GHz). The measured complex reflection coefficients were transformed into the time domain with the use of the inverse Discrete Fourier Transform (IDFT). Based on the time distance between the reflections of an electric pulse traveling along the probe's sensing element, bulk dielectric permittivity of soil surrounding the probe can be calculated. A linear relation between the square root of DP and the pulse propagation time was obtained. Also, the probe was calibrated for bulk electrical conductivity measurements.</description><subject>CAD</subject><subject>Computer aided design</subject><subject>Conductivity</subject><subject>Conductors</subject><subject>Coplanar waveguides</subject><subject>Dagger probe</subject><subject>Dielectric permittivity</subject><subject>Dielectric properties</subject><subject>Dielectrics</subject><subject>Electrical resistivity</subject><subject>Electromagnetics</subject><subject>Flat conductors</subject><subject>Fourier transforms</subject><subject>Frequency ranges</subject><subject>Laboratory tests</subject><subject>Measurement</subject><subject>Moisture content</subject><subject>Network analysers</subject><subject>Parameters</subject><subject>Permittivity</subject><subject>Pulse propagation</subject><subject>Resins</subject><subject>Robustness (mathematics)</subject><subject>Soil moisture</subject><subject>Soil water</subject><subject>Soils</subject><subject>Stiffness</subject><subject>TDR method</subject><subject>Volumetric analysis</subject><issn>0263-2241</issn><issn>1873-412X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNkEtLAzEQx4MoWKvfIeJ5a97tHkt9QkGUCt5CNjspWXabNUmFfnu3rIcePQ0M_8fMD6FbSmaUUHXfzDowaR-hg12eMcLosC-5WpyhCV3MeSEo-zpHE8IULxgT9BJdpdQQQhQv1QS9L_u-9dZkH3Y4OGxwbbZbiLiPoQLsQsQp-BbXHlqwOXqLe4idz9n_-HzAJ-24OuDNw8c1unCmTXDzN6fo8-lxs3op1m_Pr6vlurCCkFxIrmpTlaxWqqydKSUBRakSCzcnVBhVGpBWUmYdrUw1l1XNSgWkcgBcOAl8iu7G3OHS7z2krJuwj7uhUjMpFBVEcjKoylFlY0gpgtN99J2JB02JPhLUjT75QR8J6pHg4F2NXhje-PEQdbIedhZqHwcWug7-Hym_vRGA2g</recordid><startdate>202106</startdate><enddate>202106</enddate><creator>Majcher, Jacek</creator><creator>Kafarski, Marcin</creator><creator>Wilczek, Andrzej</creator><creator>Szypłowska, Agnieszka</creator><creator>Lewandowski, Arkadiusz</creator><creator>Woszczyk, Aleksandra</creator><creator>Skierucha, Wojciech</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202106</creationdate><title>Application of a dagger probe for soil dielectric permittivity measurement by TDR</title><author>Majcher, Jacek ; Kafarski, Marcin ; Wilczek, Andrzej ; Szypłowska, Agnieszka ; Lewandowski, Arkadiusz ; Woszczyk, Aleksandra ; Skierucha, Wojciech</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-536dab92d669dfa950e611648f7014a69ae5c512cf1bab75bd296e0bfee34f5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CAD</topic><topic>Computer aided design</topic><topic>Conductivity</topic><topic>Conductors</topic><topic>Coplanar waveguides</topic><topic>Dagger probe</topic><topic>Dielectric permittivity</topic><topic>Dielectric properties</topic><topic>Dielectrics</topic><topic>Electrical resistivity</topic><topic>Electromagnetics</topic><topic>Flat conductors</topic><topic>Fourier transforms</topic><topic>Frequency ranges</topic><topic>Laboratory tests</topic><topic>Measurement</topic><topic>Moisture content</topic><topic>Network analysers</topic><topic>Parameters</topic><topic>Permittivity</topic><topic>Pulse propagation</topic><topic>Resins</topic><topic>Robustness (mathematics)</topic><topic>Soil moisture</topic><topic>Soil water</topic><topic>Soils</topic><topic>Stiffness</topic><topic>TDR method</topic><topic>Volumetric analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Majcher, Jacek</creatorcontrib><creatorcontrib>Kafarski, Marcin</creatorcontrib><creatorcontrib>Wilczek, Andrzej</creatorcontrib><creatorcontrib>Szypłowska, Agnieszka</creatorcontrib><creatorcontrib>Lewandowski, Arkadiusz</creatorcontrib><creatorcontrib>Woszczyk, Aleksandra</creatorcontrib><creatorcontrib>Skierucha, Wojciech</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Measurement : journal of the International Measurement Confederation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Majcher, Jacek</au><au>Kafarski, Marcin</au><au>Wilczek, Andrzej</au><au>Szypłowska, Agnieszka</au><au>Lewandowski, Arkadiusz</au><au>Woszczyk, Aleksandra</au><au>Skierucha, Wojciech</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of a dagger probe for soil dielectric permittivity measurement by TDR</atitle><jtitle>Measurement : journal of the International Measurement Confederation</jtitle><date>2021-06</date><risdate>2021</risdate><volume>178</volume><spage>109368</spage><pages>109368-</pages><artnum>109368</artnum><issn>0263-2241</issn><eissn>1873-412X</eissn><abstract>•Dagger probe model for measuring soil moisture and dielectric permittivity.•Numerical simulations of the dagger probe.•The field strength distribution around the dagger probe.•Laboratory measurements for sand with different moisture and electrical conductivity. The most basic parameter of soil is volumetric water content (VWC). This parameter is typically determined indirectly, based on other parameters. Currently, a widely used method for indirect VWC determination is a method which is based on soil dielectric permittivity (DP) measurement, using the well-known Topp formula. The paper presents a novel probe for soil VWC and electrical conductivity (EC) measurement employing the above method. The new probe is going to be adopted on a mobile plant-watering machines used in precise agriculture e.g. for plants watering, thus it features a robust mechanical design and allows for instantaneous readout of VWC and EC values. The design of the probe mimics a dagger with three flat conductors forming a short-circuited coplanar waveguide with the space between the conductors filled with a mineral cold-curing resin. The resin filling the space between the bars improves the mechanical stiffness of the probe and ensures constant electrical parameters, which increases the measurement accuracy. In the first step, Ansys HFSS software was used to perform electromagnetic (EM), numerical simulations for the proposed solution, in order to determine the optimal electrical parameters of the probe. Next, a probe prototype was made to carry out laboratory tests. The measurements were performed with the use of a vector network analyzer (VNA) in the frequency range (3.74 MHz − 3 GHz). The measured complex reflection coefficients were transformed into the time domain with the use of the inverse Discrete Fourier Transform (IDFT). Based on the time distance between the reflections of an electric pulse traveling along the probe's sensing element, bulk dielectric permittivity of soil surrounding the probe can be calculated. A linear relation between the square root of DP and the pulse propagation time was obtained. Also, the probe was calibrated for bulk electrical conductivity measurements.</abstract><cop>London</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.measurement.2021.109368</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0263-2241
ispartof Measurement : journal of the International Measurement Confederation, 2021-06, Vol.178, p.109368, Article 109368
issn 0263-2241
1873-412X
language eng
recordid cdi_proquest_journals_2546140530
source ScienceDirect Journals
subjects CAD
Computer aided design
Conductivity
Conductors
Coplanar waveguides
Dagger probe
Dielectric permittivity
Dielectric properties
Dielectrics
Electrical resistivity
Electromagnetics
Flat conductors
Fourier transforms
Frequency ranges
Laboratory tests
Measurement
Moisture content
Network analysers
Parameters
Permittivity
Pulse propagation
Resins
Robustness (mathematics)
Soil moisture
Soil water
Soils
Stiffness
TDR method
Volumetric analysis
title Application of a dagger probe for soil dielectric permittivity measurement by TDR
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T21%3A15%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20a%20dagger%20probe%20for%20soil%20dielectric%20permittivity%20measurement%20by%20TDR&rft.jtitle=Measurement%20:%20journal%20of%20the%20International%20Measurement%20Confederation&rft.au=Majcher,%20Jacek&rft.date=2021-06&rft.volume=178&rft.spage=109368&rft.pages=109368-&rft.artnum=109368&rft.issn=0263-2241&rft.eissn=1873-412X&rft_id=info:doi/10.1016/j.measurement.2021.109368&rft_dat=%3Cproquest_cross%3E2546140530%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c400t-536dab92d669dfa950e611648f7014a69ae5c512cf1bab75bd296e0bfee34f5e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2546140530&rft_id=info:pmid/&rfr_iscdi=true