Loading…

An ANN-exhaustive-listing method for optimization of multiple building shapes and envelope properties with maximum thermal performance

With increasing awareness of sustainability, demands on optimized design of building shapes with a view to maximize its thermal performance have become stronger. Current research focuses more on building envelopes than shapes, and thermal comfort of building occupants has not been considered in maxi...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in Energy 2021-06, Vol.15 (2), p.550-563
Main Authors: LIN, Yaolin, YANG, Wei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:With increasing awareness of sustainability, demands on optimized design of building shapes with a view to maximize its thermal performance have become stronger. Current research focuses more on building envelopes than shapes, and thermal comfort of building occupants has not been considered in maximizing thermal performance in building shape optimization. This paper attempts to develop an innovative ANN (artificial neural network)-exhaustive-listing method to optimize the building shapes and envelope physical properties in achieving maximum thermal performance as measured by both thermal load and comfort hour. After verified, the developed method is applied to four different building shapes in five different climate zones in China. It is found that the building shape needs to be treated separately to achieve sufficient accuracy of prediction of thermal performance and that the ANN is an accurate technique to develop models of discomfort hour with errors of less than 1.5%. It is also found that the optimal solutions favor the smallest window-to-external surface area with triple-layer low-E windows and insulation thickness of greater than 90 mm. The merit of the developed method is that it can rapidly reach the optimal solutions for most types of building shapes with more than two objective functions and large number of design variables.
ISSN:2095-1701
2095-1698
DOI:10.1007/s11708-019-0607-1