Loading…

Role of thermal expansion heterogeneity in the cryogenic rejuvenation of metallic glasses

Cryogenic rejuvenation in metallic glasses reported in Ketov et al 's experiment (2015 Nature 524 200) has attracted much attention, both in experiments and numerical studies. The atomic mechanism of rejuvenation has been conjectured to be related to the heterogeneity of the glassy state, but t...

Full description

Saved in:
Bibliographic Details
Published in:JPhys materials 2018-12, Vol.1 (1), p.15001
Main Authors: Shang, Baoshuang, Guan, Pengfei, Barrat, Jean-Louis
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cryogenic rejuvenation in metallic glasses reported in Ketov et al 's experiment (2015 Nature 524 200) has attracted much attention, both in experiments and numerical studies. The atomic mechanism of rejuvenation has been conjectured to be related to the heterogeneity of the glassy state, but the quantitative evidence is still elusive. Here we use molecular dynamics simulations of a model metallic glass to investigate the heterogeneity in the local thermal expansion. We then combine the resulting spatial distribution of thermal expansion with a continuum mechanics calculation to infer the internal stresses caused by a thermal cycle. Comparing the internal stress with the local yield stress, we prove that the heterogeneity in thermo mechanical response has the potential to trigger local shear transformations, and therefore to induce rejuvenation during a cryogenic thermal cycling.
ISSN:2515-7639
2515-7639
DOI:10.1088/2515-7639/aad451