Loading…

Cosmography by orthogonalized logarithmic polynomials

Cosmography is a powerful tool for investigating the Universe kinematic and then for reconstructing the dynamics in a model-independent way. However, recent new measurements of supernovae Ia and quasars have populated the Hubble diagram up to high redshifts ( z  ∼ 7.5) and the application of the tra...

Full description

Saved in:
Bibliographic Details
Published in:Astronomy and astrophysics (Berlin) 2021-05, Vol.649, p.A65
Main Authors: Bargiacchi, G., Risaliti, G., Benetti, M., Capozziello, S., Lusso, E., Saccardi, A., Signorini, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c388t-10c3291ad97feb6f7d68f494431c6670e9f82b6b6b7084b530e7420ee83eadc43
cites cdi_FETCH-LOGICAL-c388t-10c3291ad97feb6f7d68f494431c6670e9f82b6b6b7084b530e7420ee83eadc43
container_end_page
container_issue
container_start_page A65
container_title Astronomy and astrophysics (Berlin)
container_volume 649
creator Bargiacchi, G.
Risaliti, G.
Benetti, M.
Capozziello, S.
Lusso, E.
Saccardi, A.
Signorini, M.
description Cosmography is a powerful tool for investigating the Universe kinematic and then for reconstructing the dynamics in a model-independent way. However, recent new measurements of supernovae Ia and quasars have populated the Hubble diagram up to high redshifts ( z  ∼ 7.5) and the application of the traditional cosmographic approach has become less straightforward due to the large redshifts implied. Here we investigate this issue through an expansion of the luminosity distance–redshift relation in terms of orthogonal logarithmic polynomials. In particular, we point out the advantages of a new procedure called orthogonalization, and we show that such an expansion provides a very good fit in the whole z  = 0 ÷ 7.5 range to both real and mock data obtained assuming various cosmological models. Moreover, although the cosmographic series is tested well beyond its convergence radius, the parameters obtained expanding the luminosity distance–redshift relation for the Lambda cold dark matter (ΛCDM) model are broadly consistent with the results from a fit of mock data obtained with the same cosmological model. This provides a method for testing the reliability of a cosmographic function to study cosmological models at high redshifts, and it demonstrates that the logarithmic polynomial series can be used to test the consistency of the ΛCDM model with the current Hubble diagram of quasars and supernovae Ia. We confirm a strong tension (at > 4 σ ) between the concordance cosmological model and the Hubble diagram at z  > 1.5. This tension is dominated by the contribution of quasars at z  > 2 and also starts to be present in the few supernovae Ia observed at z  > 1.
doi_str_mv 10.1051/0004-6361/202140386
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2546968197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2546968197</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-10c3291ad97feb6f7d68f494431c6670e9f82b6b6b7084b530e7420ee83eadc43</originalsourceid><addsrcrecordid>eNo9kE9LxDAUxIMoWFc_gZeC57ovf5qkRynqCgte9BzSNGm7tJuadA_109uyssxhGPjxeDMIPWJ4xpDjLQCwjFOOtwQIZkAlv0IJZpRkIBi_RsmFuEV3MR6WSLCkCcpLHwffBD22c1rNqQ9T6xt_1H33a-u0940O3dQOnUlH389HP3S6j_foxi1mH_59g77fXr_KXbb_fP8oX_aZoVJOGQZDSYF1XQhnK-5EzaVjBWMUG84F2MJJUvFFAiSrcgpWMALWSmp1bRjdoKfz3TH4n5ONkzr4U1iei4rkjBdc4kIsFD1TJvgYg3VqDN2gw6wwqHUftbZXa3t12Yf-ATinV50</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2546968197</pqid></control><display><type>article</type><title>Cosmography by orthogonalized logarithmic polynomials</title><source>EZB Electronic Journals Library</source><creator>Bargiacchi, G. ; Risaliti, G. ; Benetti, M. ; Capozziello, S. ; Lusso, E. ; Saccardi, A. ; Signorini, M.</creator><creatorcontrib>Bargiacchi, G. ; Risaliti, G. ; Benetti, M. ; Capozziello, S. ; Lusso, E. ; Saccardi, A. ; Signorini, M.</creatorcontrib><description>Cosmography is a powerful tool for investigating the Universe kinematic and then for reconstructing the dynamics in a model-independent way. However, recent new measurements of supernovae Ia and quasars have populated the Hubble diagram up to high redshifts ( z  ∼ 7.5) and the application of the traditional cosmographic approach has become less straightforward due to the large redshifts implied. Here we investigate this issue through an expansion of the luminosity distance–redshift relation in terms of orthogonal logarithmic polynomials. In particular, we point out the advantages of a new procedure called orthogonalization, and we show that such an expansion provides a very good fit in the whole z  = 0 ÷ 7.5 range to both real and mock data obtained assuming various cosmological models. Moreover, although the cosmographic series is tested well beyond its convergence radius, the parameters obtained expanding the luminosity distance–redshift relation for the Lambda cold dark matter (ΛCDM) model are broadly consistent with the results from a fit of mock data obtained with the same cosmological model. This provides a method for testing the reliability of a cosmographic function to study cosmological models at high redshifts, and it demonstrates that the logarithmic polynomial series can be used to test the consistency of the ΛCDM model with the current Hubble diagram of quasars and supernovae Ia. We confirm a strong tension (at &gt; 4 σ ) between the concordance cosmological model and the Hubble diagram at z  &gt; 1.5. This tension is dominated by the contribution of quasars at z  &gt; 2 and also starts to be present in the few supernovae Ia observed at z  &gt; 1.</description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0746</identifier><identifier>DOI: 10.1051/0004-6361/202140386</identifier><language>eng</language><publisher>Heidelberg: EDP Sciences</publisher><subject>Astronomical models ; Cold dark matter ; Cosmology ; Hubble diagram ; Luminosity ; Polynomials ; Quasars ; Red shift ; Supernovae</subject><ispartof>Astronomy and astrophysics (Berlin), 2021-05, Vol.649, p.A65</ispartof><rights>Copyright EDP Sciences May 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-10c3291ad97feb6f7d68f494431c6670e9f82b6b6b7084b530e7420ee83eadc43</citedby><cites>FETCH-LOGICAL-c388t-10c3291ad97feb6f7d68f494431c6670e9f82b6b6b7084b530e7420ee83eadc43</cites><orcidid>0000-0002-0167-8935</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids></links><search><creatorcontrib>Bargiacchi, G.</creatorcontrib><creatorcontrib>Risaliti, G.</creatorcontrib><creatorcontrib>Benetti, M.</creatorcontrib><creatorcontrib>Capozziello, S.</creatorcontrib><creatorcontrib>Lusso, E.</creatorcontrib><creatorcontrib>Saccardi, A.</creatorcontrib><creatorcontrib>Signorini, M.</creatorcontrib><title>Cosmography by orthogonalized logarithmic polynomials</title><title>Astronomy and astrophysics (Berlin)</title><description>Cosmography is a powerful tool for investigating the Universe kinematic and then for reconstructing the dynamics in a model-independent way. However, recent new measurements of supernovae Ia and quasars have populated the Hubble diagram up to high redshifts ( z  ∼ 7.5) and the application of the traditional cosmographic approach has become less straightforward due to the large redshifts implied. Here we investigate this issue through an expansion of the luminosity distance–redshift relation in terms of orthogonal logarithmic polynomials. In particular, we point out the advantages of a new procedure called orthogonalization, and we show that such an expansion provides a very good fit in the whole z  = 0 ÷ 7.5 range to both real and mock data obtained assuming various cosmological models. Moreover, although the cosmographic series is tested well beyond its convergence radius, the parameters obtained expanding the luminosity distance–redshift relation for the Lambda cold dark matter (ΛCDM) model are broadly consistent with the results from a fit of mock data obtained with the same cosmological model. This provides a method for testing the reliability of a cosmographic function to study cosmological models at high redshifts, and it demonstrates that the logarithmic polynomial series can be used to test the consistency of the ΛCDM model with the current Hubble diagram of quasars and supernovae Ia. We confirm a strong tension (at &gt; 4 σ ) between the concordance cosmological model and the Hubble diagram at z  &gt; 1.5. This tension is dominated by the contribution of quasars at z  &gt; 2 and also starts to be present in the few supernovae Ia observed at z  &gt; 1.</description><subject>Astronomical models</subject><subject>Cold dark matter</subject><subject>Cosmology</subject><subject>Hubble diagram</subject><subject>Luminosity</subject><subject>Polynomials</subject><subject>Quasars</subject><subject>Red shift</subject><subject>Supernovae</subject><issn>0004-6361</issn><issn>1432-0746</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kE9LxDAUxIMoWFc_gZeC57ovf5qkRynqCgte9BzSNGm7tJuadA_109uyssxhGPjxeDMIPWJ4xpDjLQCwjFOOtwQIZkAlv0IJZpRkIBi_RsmFuEV3MR6WSLCkCcpLHwffBD22c1rNqQ9T6xt_1H33a-u0940O3dQOnUlH389HP3S6j_foxi1mH_59g77fXr_KXbb_fP8oX_aZoVJOGQZDSYF1XQhnK-5EzaVjBWMUG84F2MJJUvFFAiSrcgpWMALWSmp1bRjdoKfz3TH4n5ONkzr4U1iei4rkjBdc4kIsFD1TJvgYg3VqDN2gw6wwqHUftbZXa3t12Yf-ATinV50</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Bargiacchi, G.</creator><creator>Risaliti, G.</creator><creator>Benetti, M.</creator><creator>Capozziello, S.</creator><creator>Lusso, E.</creator><creator>Saccardi, A.</creator><creator>Signorini, M.</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0167-8935</orcidid></search><sort><creationdate>20210501</creationdate><title>Cosmography by orthogonalized logarithmic polynomials</title><author>Bargiacchi, G. ; Risaliti, G. ; Benetti, M. ; Capozziello, S. ; Lusso, E. ; Saccardi, A. ; Signorini, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-10c3291ad97feb6f7d68f494431c6670e9f82b6b6b7084b530e7420ee83eadc43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Astronomical models</topic><topic>Cold dark matter</topic><topic>Cosmology</topic><topic>Hubble diagram</topic><topic>Luminosity</topic><topic>Polynomials</topic><topic>Quasars</topic><topic>Red shift</topic><topic>Supernovae</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bargiacchi, G.</creatorcontrib><creatorcontrib>Risaliti, G.</creatorcontrib><creatorcontrib>Benetti, M.</creatorcontrib><creatorcontrib>Capozziello, S.</creatorcontrib><creatorcontrib>Lusso, E.</creatorcontrib><creatorcontrib>Saccardi, A.</creatorcontrib><creatorcontrib>Signorini, M.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bargiacchi, G.</au><au>Risaliti, G.</au><au>Benetti, M.</au><au>Capozziello, S.</au><au>Lusso, E.</au><au>Saccardi, A.</au><au>Signorini, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cosmography by orthogonalized logarithmic polynomials</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><date>2021-05-01</date><risdate>2021</risdate><volume>649</volume><spage>A65</spage><pages>A65-</pages><issn>0004-6361</issn><eissn>1432-0746</eissn><abstract>Cosmography is a powerful tool for investigating the Universe kinematic and then for reconstructing the dynamics in a model-independent way. However, recent new measurements of supernovae Ia and quasars have populated the Hubble diagram up to high redshifts ( z  ∼ 7.5) and the application of the traditional cosmographic approach has become less straightforward due to the large redshifts implied. Here we investigate this issue through an expansion of the luminosity distance–redshift relation in terms of orthogonal logarithmic polynomials. In particular, we point out the advantages of a new procedure called orthogonalization, and we show that such an expansion provides a very good fit in the whole z  = 0 ÷ 7.5 range to both real and mock data obtained assuming various cosmological models. Moreover, although the cosmographic series is tested well beyond its convergence radius, the parameters obtained expanding the luminosity distance–redshift relation for the Lambda cold dark matter (ΛCDM) model are broadly consistent with the results from a fit of mock data obtained with the same cosmological model. This provides a method for testing the reliability of a cosmographic function to study cosmological models at high redshifts, and it demonstrates that the logarithmic polynomial series can be used to test the consistency of the ΛCDM model with the current Hubble diagram of quasars and supernovae Ia. We confirm a strong tension (at &gt; 4 σ ) between the concordance cosmological model and the Hubble diagram at z  &gt; 1.5. This tension is dominated by the contribution of quasars at z  &gt; 2 and also starts to be present in the few supernovae Ia observed at z  &gt; 1.</abstract><cop>Heidelberg</cop><pub>EDP Sciences</pub><doi>10.1051/0004-6361/202140386</doi><orcidid>https://orcid.org/0000-0002-0167-8935</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-6361
ispartof Astronomy and astrophysics (Berlin), 2021-05, Vol.649, p.A65
issn 0004-6361
1432-0746
language eng
recordid cdi_proquest_journals_2546968197
source EZB Electronic Journals Library
subjects Astronomical models
Cold dark matter
Cosmology
Hubble diagram
Luminosity
Polynomials
Quasars
Red shift
Supernovae
title Cosmography by orthogonalized logarithmic polynomials
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T01%3A35%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cosmography%20by%20orthogonalized%20logarithmic%20polynomials&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=Bargiacchi,%20G.&rft.date=2021-05-01&rft.volume=649&rft.spage=A65&rft.pages=A65-&rft.issn=0004-6361&rft.eissn=1432-0746&rft_id=info:doi/10.1051/0004-6361/202140386&rft_dat=%3Cproquest_cross%3E2546968197%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c388t-10c3291ad97feb6f7d68f494431c6670e9f82b6b6b7084b530e7420ee83eadc43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2546968197&rft_id=info:pmid/&rfr_iscdi=true